Geometry Instructional Toolkit

The Geometry Instructional Toolkit is intended to assist teachers with planning instruction aligned to the Florida Standards. This toolkit is not intended to replace your district's curriculum, but rather it serves to support the teaching and learning of the Geometry Florida Standards. This toolkit includes a breakdown of information related to the Geometry End-of-Course (EOC) Assessment, CPALMS and Florida Students, the Geometry Florida Standards, and standards aligned resources.

Geometry End-of-Course Assessment

This section highlights some key information related to the Geometry EOC that can be found on the <u>FSA Portal</u>. These items include the Test Design Summary and Blueprint, Test Item Specifications and EOC Practice Tests.

Test Design Summary and Blueprint

The Geometry EOC standards can be broken down into three major reporting categories as assessed on the Geometry EOC with a corresponding weight. Within each reporting category are multiple domains and standards assessed. This information can also be found on page 8 of the <u>Test Design Summary and Blueprint</u>.

- Congruence, Similarity, Right Triangles, and Trigonometry (46%)
 - o <u>Congruence</u>
 - o Similarity, Right Triangles, & Trigonometry
- Circles, Geometric Measurement, and Geometric Properties with Equations (38%)
 - o <u>Circles</u>
 - o Geometric Measurement & Dimension
 - o Expressing Geometric Properties with Equations
- Modeling with Geometry (16%)

Test Item Specifications

The Geometry <u>Test Item Specification Document</u> indicates the alignment of items with the Florida Standards. Assessment limits are included in the specifications, which define the range of content knowledge in the assessment items for the standard. In addition to limits, each item specification identifies whether or not that item could appear in the calculator allowed test session or no calculator allowed test session. Each standard in this toolkit lists the corresponding page number in the specifications document along with any assessment limits and allowable calculator use.

Practice Tests

<u>Practice Tests</u> are available for students to become familiar with the various item types that may be used on the Geometry EOC. Within the Test Item Specification document, page 42, is a chart aligning standards to each item type and item number on the Computer-Based Practice Test. Each Computer-Based Practice Test is provided with an <u>answer key</u>. It is important to note that students are not permitted to use a calculator of any kind on Session 1 of the Geometry EOC. Students will be permitted a scientific calculator on all other sessions. For information regarding usage of calculators, please see the <u>Calculator and Reference Sheet Policy</u> page on the FSA portal.

CPALMS: Official Source of Florida Standards

This section features information and tools that are found on <u>CPALMS</u>.

Geometry Course Description

The <u>Geometry Course Description</u> provides an overview for the course with standards aligned resources for educators, students, and parents.

Mathematics Formative Assessment System (MFAS)

One resource available on CPALMS that has been designed specifically for mathematics instruction is the <u>Mathematics Formative Assessment System (MFAS</u>). The system includes a task or problem that teachers can implement with their students. It also includes various levels of rubrics that help the teacher interpret students' responses. In addition to using the MFAS tasks as formative assessments for students, these tasks can be used by teachers to plan lessons that are closely aligned to the standards.

Model Eliciting Activity (MEAs)

<u>Model Eliciting Activities (MEAs)</u> are open-ended, interdisciplinary problem-solving activities that are meant to reveal students' thinking about the concepts embedded in these realistic activities. Students will work in teams to apply their knowledge of mathematics and science while considering constraints and tradeoffs. Each MEA is aligned to at least two subject areas, including mathematics, English language arts and/or literacy in the content areas, and science.

Mathematical Practices

The Mathematical Practices are habits of mind that describe varieties of expertise that mathematics educators at all levels should seek to develop in their students. The Mathematical Practices should be infused during the course and will be assessed throughout the Geometry EOC. More information about each Mathematical Practice can be found by clicking on the links below.

MAFS.K12.MP.1.1 Make sense of problems and persevere in solving them.

MAFS.K12.MP.2.1 Reason abstractly and quantitatively.

MAFS.K12.MP.3.1 Construct viable arguments and critique the reasoning of others.

MAFS.K12.MP.4.1 Model with mathematics.

MAFS.K12.MP.5.1 Use appropriate tools strategically.

MAFS.K12.MP.6.1 Attend to precision.

MAFS.K12.MP.7.1 Look for and make use of structure.

MAFS.K12.MP.8.1 Look for and express regularity in repeated reasoning.

Depth of Knowledge

Florida has adopted Webb's four-level Depth of Knowledge (DOK) model of content complexity as a means of classifying the cognitive demand presented by the Florida standards. It is important to distinguish between the DOK rating for a given standard and the possible DOK ratings for assessment items designed to address the standard. This is particularly important for assessment purposes, since 50% or more of assessment items associated with a given standard should meet or exceed the DOK level of the standard. The DOK Levels are identified for each standard throughout this document. Please visit the <u>CPALMS Content Complexity</u> page for more information about the DOK complexity for standards. For more information about the DOK complexity for standards. For more information about the DOK complexity for <u>Portal</u>.

Math Modeling Standards

Standards that are marked with a star symbol (\pm) are standards within the math modeling conceptual category. Modeling standards are best interpreted in relation to other standards and within other content areas. The basic modeling cycle involves (1) identifying variables in the situation and selecting those that represent essential features, (2) formulating a model by creating and selecting geometric, graphical, tabular, algebraic, or statistical representations that describe relationships between the variables, (3) analyzing and performing operations on these relationships to draw conclusions, (4) interpreting the results of the mathematics in terms of the original situation, (5) validating the conclusions by comparing them with the situation, and then either improving the model or, if it is acceptable, (6) reporting on the conclusions and the reasoning behind them. Choices, assumptions, and approximations are present throughout this cycle. See figure below that visualizes the modeling cycle.

Florida Students

Resources specifically designed with students in mind are available on <u>Florida Students</u>. Florida Students is an interactive site that provides educational resources and student tutorials aligned to the Florida Standards. This site should not be used as a lesson guide, but rather a tool to help students obtain mastery in various mathematical concepts.

Florida Students Achieve

Resources specifically designed with parents in mind are available on <u>Florida Students Achieve</u>. This site provides parents with information on what their student should be learning at each grade level so that may support their child's education.

Geometry Florida Standards

This section includes a breakdown of each standard by domain and cluster. Standards should not be taught in the order below. To do so would strip the coherence of the mathematical ideas and miss opportunity to enhance the major work of the grade with the supporting clusters and/or standards. In addition to the breakdown, each standard has the corresponding DOK Level, clarifications and assessment limits with page number in the Geometry <u>Test Item Specifications</u>, and aligned resources.

Domain: Geometry-Congruence

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.G-	Know precise definitions of angle,	Page 15; Students will use the precise	MFAS:
<u>CO.1.1</u>	circle, perpendicular line, parallel	definitions of angles, circles,	Definition of
	line, and line segment, based on the	perpendicular lines, parallel lines, and	<u>a Circle</u>
	undefined notions of point, line,	line segments, basing the definitions	
	distance along a line, and distance	on the undefined notions of point,	Lesson:
	around a circular arc.	line, distance along a line, and	<u>Musical</u>
		distance around a circular arc.	Chairs with
	Content Complexity: Level 1: Recall		Words and a
	<u> </u>	Item assessed with and/or without	<u>Ball</u>
		calculator.	
MAFS.912.G-	Represent transformations in the	Pages 16-17; Students will represent	MFAS:
<u>CO.1.2</u>	plane using, e.g., transparencies and	transformations in the plane. Students	<u>Comparing</u>
	geometry software; describe	will describe transformations as	<u>Transformati</u>
	transformations as functions that	functions that take points in the plane	<u>ons</u>
	take points in the plane as inputs	as inputs and give other points as	
	and give other points as outputs.	outputs. Students will compare	Lesson:
	Compare transformations that	transformations that preserve	<u>Transformati</u>
	preserve distance and angle to those	distance and angle to those that do	<u>ons</u>
	that do not (e.g., translation versus	not. Items may require the student to	Geometry in
	horizontal stretch).	find the distance between two points	<u>Motion</u>
		or the slope of a line. In items that	
	Content Complexity: Level 2: Basic	require the student to represent	
	Application of Skills & Concepts	transformations, at least two	
		transformations should be applied.	
		Item assessed with and/or without	
		calculator.	
MAFS.912.G-	Given a rectangle, parallelogram,	Pages 18-19; Students will describe	<u>MFAS</u> :
<u>CO.1.3</u>	trapezoid, or regular polygon,	rotations and reflections that carry a	<u>Transformati</u>
	describe the rotations and	geometric figure onto itself.	<u>ons of</u>
	reflections that carry it onto itself.		<u>Trapezoids</u>
		Item assessed with and/or without	
	Content Complexity: Level 2: Basic	calculator.	Lesson: Lam
	Application of Skills & Concepts		Still Me
			Transformed

MAFS.912.G-	Develop definitions of rotations,	Pages 16-17; Students will use	MFAS: Define
CO.1.4	reflections, and translations in terms	definitions of rotations, reflections,	a Rotation
<u></u>	of angles, circles, perpendicular	and translations in terms of angles,	<u>u notation</u>
		C	
	lines, parallel lines, and line	circles, perpendicular lines, parallel	<u>Virtual</u>
	segments.	lines, and line segments.	<u>Manipulative</u>
			:
	Content Complexity: Level 3:	Item assessed with and/or without	<u>Transformati</u>
	Strategic Thinking & Complex	calculator.	<u>ons -</u>
	Reasoning		<u>Rotation</u>
MAFS.912.G-	Given a geometric figure and a	Pages 18-19; Students will apply two	MFAS:
<u>CO.1.5</u>	rotation, reflection, or translation,	or more transformations to a given	Indicate the
	draw the transformed figure, e.g.,	figure to draw a transformed figure.	<u>Transformati</u>
	graph paper, or geometry software.	Students will specify a sequence of	ons
	Specify a sequence of	transformations that will carry a figure	
	transformations that will carry a	onto another.	Lesson: How
	given figure onto another.		Did it Get
		Item assessed with and/or without	There?
	Content Complexity: Level 2: Basic	calculator.	
	Application of Skills & Concepts		

Cluster 2 (Major): Understand congruence in terms of rigid motions.

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.G-	Use geometric descriptions of rigid	Pages 20-21; Students will use rigid	MFAS:
<u>CO.2.6</u>	motions to transform figures and to	motions to transform figures. Students	Transform
	predict the effect of a given rigid	will predict the effect of a given rigid	<u>This</u>
	motion on a given figure; given two	motion on a given figure. Items may	
	figures, use the definition of	require the student to justify	Lesson: How
	congruence in terms of rigid	congruence using the properties of	<u>do your Air</u>
	motions to decide if they are	rigid motion. Students will apply	<u>Jordan's</u>
	congruent.	congruence to solve problems.	move?
		Students will use congruence to justify	
	Content Complexity: Level 2: Basic	steps within the context of a proof.	
	Application of Skills & Concepts		
	h h h h h h h h h h h h h h h h h h h	Item assessed with and/or without	
		calculator.	
MAFS.912.G-	Use the definition of congruence in	Pages 20-21; Students will use the	MFAS:
<u>CO.2.7</u>	terms of rigid motions to show that	definition of congruence in terms of	Showing
	two triangles are congruent if and	rigid motions to determine if two	Triangles
	only if corresponding pairs of sides	figures are congruent. Students will	Congruent
	and corresponding pairs of angles	apply congruence to solve problems.	Using Rigid
	are congruent.	Students will use congruence to justify	<u>Motion</u>
		steps within the context of a proof.	
	Content Complexity: Level 1: Recall		Lesson:
		Item assessed with and/or without	Match That!
		calculator.	
MAFS.912.G-	Explain how the criteria for triangle	Pages 20-21; Students will explain	MFAS:
<u>CO.2.8</u>	congruence (ASA, SAS, SSS, and	triangle congruence using the	Justifying SAS
	Hypotenuse-Leg) follow from the	definition of congruence in terms of	<u>Congruence</u>

definition of congruence in terms of	rigid motions. Students will apply	
rigid motions.	congruence to solve problems.	Lesson:
	Students will use congruence to justify	Turning to
Content Complexity: Level 2: Basic	steps within the context of a proof.	Congruence
Application of Skills & Concepts		
	Item assessed with and/or without	
	calculator.	

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.G-	Prove theorems about lines and	Page 22; Students will prove theorems	MFAS: Find
<u>CO.3.9</u>	angles; use theorems about lines	about lines. Students will prove	<u>Angle</u>
	and angles to solve problems.	theorems about angles. Students will	<u>Measures</u>
	Theorems include: vertical angles	use theorems about lines to solve	
	are congruent; when a transversal	problems. Students will use theorems	<u>Lesson</u> :
	crosses parallel lines, alternate	about angles to solve problems. Items	<u>Parallel</u>
	interior angles are congruent and	may include narrative proofs, flow-	<u>Thinking</u>
	corresponding angles are congruent;	chart proofs, two-column proofs, or	<u>Debate</u>
	points on a perpendicular bisector of	informal proofs. In items that require	
	a line segment are exactly those	the student to justify, the student	
	equidistant from the segment's	should not be required to recall from	
	endpoints.	memory the formal name of a	
		theorem.	
	<u>Content Complexity</u> : Level 3:		
	Strategic Thinking & Complex	Item assessed with and/or without	
	Reasoning	calculator.	
<u>MAFS.912.G-</u>	Prove theorems about triangles; use	Page 23; Students will prove theorems	MFAS: The
<u>CO.3.10</u>	theorems about triangles to solve	about triangles.	Third Side of
	problems. Theorems include:	Students will use theorems about	<u>a Triangle</u>
	measures of interior angles of a	triangles to solve problems. Items may	
	triangle sum to 180°; triangle	include narrative proofs, flow-chart	Lesson:
	inequality theorem; base angles of	proofs, two-column proofs, or	Keeping
	isosceles triangles are congruent;	informal proofs.	Triangles in
	the segment joining midpoints of	In items that require the student to	<u>Balance</u>
	two sides of a triangle is parallel to	justify, the student should not be	
	the third side and half the length;	required to recall from memory the formal name of a theorem.	
	the medians of a triangle meet at a point.		
		Item assessed with and/or without	
	Content Complexity: Level 3:	calculator.	
	Strategic Thinking & Complex		
	Reasoning		
MAFS.912.G-	Prove theorems about	Page 24; Students will prove theorems	MFAS:
CO.3.11	parallelograms; use theorems about	about parallelograms. Students will	Proving
	parallelograms to solve problems.	use properties of parallelograms to	Parallelogra
	Theorems include: opposite sides are	solve problems. Items may require the	m Diagonals
	congruent, opposite angles are	student to be familiar with similarities	Bisect
	congruent, the diagonals of a	and differences between types of	
		and amerences between types of	

Cluster 3 (Major): Prove geometric theorems.

parallelogram bisect each other, and	parallelograms (e.g., squares and	Lesson:
conversely, rectangles are	rectangles). Items may require the	Proving
parallelograms with congruent	student to identify a specific	Parallelogra
diagonals.	parallelogram. Items may include	<u>ms</u>
	narrative proofs, flow-chart proofs,	<u>Algebraically</u>
Content Complexity: Level 3:	two-column proofs, or informal	
Strategic Thinking & Complex	proofs. In items that require the	
Reasoning	student to justify, the student should	
	not be required to recall from memory	
	the formal name of a theorem.	
	Item assessed with and/or without	
	calculator.	

Cluster 4 (Supporting): <u>Make geometric constructions.</u>

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.G-	Make formal geometric	Page 25; Students will identify the	MFAS:
<u>CO.4.12</u>	constructions with a variety of tools	result of a formal geometric	Bisecting a
	and methods (compass and	construction. Students will determine	Segment and
	straightedge, string, reflective	the steps of a formal geometric	an Angle
	devices, paper folding, dynamic	construction. Items should not ask	
	geometric software, etc.). Copying a	student to find values or use	<u>Original</u>
	segment; copying an angle;	properties of the geometric figure that	<u>Tutorial</u> : <u>The</u>
	bisecting a segment; bisecting an	is constructed.	Blueprints of
	angle; constructing perpendicular		Construction
	lines, including the perpendicular	Item assessed with and/or without	
	bisector of a line segment; and	calculator.	
	constructing a line parallel to a given		
	line through a point not on the line.		
	Content Complexity: Level 2: Basic		
	Application of Skills & Concepts		
<u>MAFS.912.G-</u>	Construct an equilateral triangle, a	Page 23; Students will identify the	<u>MFAS</u> :
<u>CO.4.13</u>	square, and a regular hexagon	result of a formal geometric	<u>Square in a</u>
	inscribed in a circle.	construction. Students will determine	<u>Circle</u>
		the steps of a formal geometric	
	Content Complexity: Level 2: Basic	construction. Items should not ask	Lesson:
	Application of Skills & Concepts	student to find values or use	<u>Construct</u>
		properties of the geometric figure that	<u>Regular</u>
		is constructed.	Polygons
			Inside Circles
		Item assessed with and/or without	
		calculator.	

Domain: Geometry-Similarity, Right Triangles, & Trigonometry

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.G-	Verify experimentally the	Page 37; When dilating a line that	MFAS: Dilation
<u>SRT.1.1</u>	 properties of dilations given by a center and a scale factor: a) A dilation takes a line not passing through the center of 	does not pass through the center of dilation, students will verify that the dilated line is parallel. When dilating a line that passes through the center	of a Line Segment Lesson:
	 the dilation to a parallel line, and leaves a line passing through the center unchanged. b) The dilation of a line segment is longer or shorter in the ratio given by the scale factor. 	of dilation, students will verify that the line is unchanged. When dilating a line segment, students will verify that the dilated line segment is longer or shorter with respect to the scale factor.	Discovering Dilations
	<u>Content Complexity</u> : Level 2: Basic Application of Skills & Concepts	Item assessed with and/or without calculator.	
<u>MAFS.912.G-</u> <u>SRT.1.2</u>	Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides. <u>Content Complexity</u> : Level 2: Basic Application of Skills & Concepts	Page 38; Students will use the definition of similarity in terms of similarity transformations to decide if two figures are similar. Students will explain using the definition of similarity in terms of similarity transformations that corresponding angles of two figures are congruent and that corresponding sides of two figures are proportional. Item assessed with and/or without calculator.	MFAS: Showing Similarity Lesson: Transformation and Similarity
<u>MAFS.912.G-</u> <u>SRT.1.3</u>	Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar. <u>Content Complexity</u> : Level 2: Basic Application of Skills & Concepts	Page 39; Students will explain using properties of similarity transformations why the AA criterion is sufficient to show that two triangles are similar. Item assessed with and/or without calculator.	MAFS: Justifying a Proof of the AA Similarity Theorem Lesson: How Much Proof Do We Need?

Cluster 1 (Major): <u>Understand similarity in terms of similarity transformations.</u>

Cluster 2 (Major): Prove theorems involving similarity.

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.G-	Prove theorems about triangles.	Page 37; Students will use triangle	MFAS:
<u>SRT.2.4</u>	Theorems include: a line parallel to	similarity to prove theorems about	Pythagorean
	one side of a triangle divides the	triangles. Students will prove the	<u>Theorem</u>
	other two proportionally, and	Pythagorean theorem using similarity.	<u>Proof</u>
	conversely; the Pythagorean		

	Theorem proved using triangle	Item assessed with and/or without	Original
	similarity.	calculator.	<u>Tutorial</u> :
			Proving
	Content Complexity: Level 3:		Theorems
	Strategic Thinking & Complex		<u>About</u>
	Reasoning		Triangles
MAFS.912.G-	Use congruence and similarity	Page 40; Students will use congruence	MFAS:
<u>SRT.2.5</u>	criteria for triangles to solve	criteria for triangles to solve problems.	Basketball
	problems and to prove	Students will use congruence criteria	<u>Goal</u>
	relationships in geometric figures.	for triangles to prove relationships in	
		geometric figures. Students will use	Lesson:
	Content Complexity: Level 3:	similarity criteria for triangles to solve	What's the
	Strategic Thinking & Complex	problems. Students will use similarity	<u>Problem</u>
	Reasoning	criteria for triangles to prove	
		relationships in geometric figures.	
		Item assessed with and/or without	
		calculator.	

Cluster 3 (Major): <u>Define trigonometric ratios and solve problems involving right triangles.</u>

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.G-	Understand that by similarity, side	Page 41; Students will use	MFAS: The
<u>SRT.3.6</u>	ratios in right triangles are	trigonometric ratios and the	Cosine Ratio
	properties of the angles in the	Pythagorean theorem to solve right	
	triangle, leading to definitions of	triangles in applied problems. Items	Lesson:
	trigonometric ratios for acute	will assess only sine, cosine, and	Discovering
	angles.	tangent to determine the length of a	Trigonometric
		side or an angle measure.	<u>Ratios</u>
	Content Complexity: Level 2: Basic		
	Application of Skills & Concepts	Item assessed with and/or without	
		calculator.	
MAFS.912.G-	Explain and use the relationship	Page 41; Students will use similarity to	MFAS:
<u>SRT.3.7</u>	between the sine and cosine of	explain the definition of trigonometric	Patterns in
	complementary angles.	ratios for acute angles. Items will	<u>the 30-60-90</u>
		assess only sine, cosine, and tangent	<u>Table</u>
	<u>Content Complexity</u> : Level 2: Basic	to determine the length of a side or an	
	Application of Skills & Concepts	angle measure.	Lesson: Sine,
			<u>Sine,</u>
		Item assessed with and/or without	Everywhere a
		calculator.	Sine
MAFS.912.G-	Use trigonometric ratios and the	Page 41; Students will explain the	<u>MFAS</u> : <u>Step</u>
<u>SRT.3.8</u>	Pythagorean Theorem to solve	relationship between sine and cosine	<u>Up</u>
	right triangles in applied problems.	of complementary angles.	
	*	Students will use the relationship	<u>Original</u>
		between sine and cosine of	<u>Tutorial</u> :
	Content Complexity: Level 2: Basic	complementary angles. Items will	Around the
	Application of Skills & Concepts	assess only sine, cosine, and tangent	World with

to determine the length of a side or an angle measure.	<u>Right</u> Triangles
Item assessed with and/or without calculator.	

Domain: Geometry-Circles

Cluster 1 (Additional): <u>Understand and apply theorems about circles.</u>

MAFS.912.G- C.1.1Prove that all circles are similar.Pages 11; Students will use a sequence of transformations to prove that circles are similar. Students will use the measures of different parts of a circle to determine similarity. Items should not require the student to write an equation of a circle.MFAS: S CirclesMAFS.912.G-Identify and describe relationshipsPages 11; Students will use a sequence of transformations to prove that circles are similar. Students will use the measures of different parts of a circle to determine similarity. Items should not require the student to write an equation of a circle.MFAS: S CirclesMAFS.912.G-Identify and describe relationshipsPage 12; Students will solve problemsMFAS: C	Why les Central
Content Complexity: Level 2: Basic Application of Skills & Conceptscircles are similar. Students will use the measures of different parts of a circle to determine similarity. Items should not require the student to write an equation of a circle.Lesson: are Circl 	<u>Central</u>
Application of Skills & Concepts the measures of different parts of a circle to determine similarity. Items should not require the student to write an equation of a circle. are Circle Similar? Item assessed with and/or without calculator. Item assessed with and/or without calculator. Similar?	<u>Central</u>
circle to determine similarity. Items should not require the student to write an equation of a circle. Item assessed with and/or without calculator.	<u>es</u> Central
should not require the student to write an equation of a circle. Similar? Item assessed with and/or without calculator. Similar?	Central
write an equation of a circle. Item assessed with and/or without calculator.	Central
Item assessed with and/or without calculator.	
calculator.	
calculator.	
<u>MAPS.912.0-</u> Identity and describe relationships Page 12, Students will solve problems <u>MPAS</u> . <u>C</u>	
C.1.2 among inscribed angles, radii, and related to circles using the properties and Insc	
chords. <i>Include the relationship</i> of central angles, inscribed angles, Angles	IDEU
between central, inscribed, and circumscribed angles, diameters, radii,	
<i>circumscribed angles; inscribed</i> chords, and tangents. Items may <u>Lesson</u> :	The
angles on a diameter are right include finding or describing the Seven Ci	
angles; the radius of a circle is length of arcs when given information. Water	
perpendicular to the tangent where	n
the radius intersects the circle. Item assessed with and/or without	-
calculator.	
Content Complexity: Level 2: Basic	
Application of Skills & Concepts	
MAFS.912.G- Construct the inscribed and Page 13; Students will construct a MFAS:	
C.1.3 circumscribed circles of a triangle, circle inscribed inside a triangle. Inscribed	d
and prove properties of angles for a Students will construct a circle Quadrila	aterals
quadrilateral inscribed in a circle. circumscribed about a triangle.	
Students will solve problems using the	
Content Complexity: Level 3: properties of inscribed and	
Strategic Thinking & Complex circumscribed circles of a triangle.	
Reasoning Students will use or justify properties	
of angles of a quadrilateral that is	
inscribed in a circle. Items may include	
problems that use the incenter and	
circumcenter of a triangle.	
Item assessed with and/or without	
calculator.	

Cluster 2 (Additional): Find arc lengths and areas of sectors of circles.

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.G-	Derive using similarity the fact that	Pages 14; Students will use similarity	MFAS: Sector
<u>C.2.5</u>	the length of the arc intercepted by	to derive the fact that the length of	Area
	an angle is proportional to the	the arc intercepted by an angle is	
	radius, and define the radian	proportional to the radius, and define	Lesson: My
	measure of the angle as the	the radian measure as the constant of	Favorite Slice
	constant of proportionality; derive	proportionality. Students will apply	
	the formula for the area of a sector.	similarity to solve problems that	
		involve the length of the arc	
	Content Complexity: Level 3:	intercepted by an angle and the radius	
	Strategic Thinking & Complex	of a circle. Students will derive the	
	Reasoning	formula for the area of a sector.	
		Students will use the formula for the	
		area of a sector to solve problems. The	
		center of dilation must be given.	
		Item assessed with and/or without	
		calculator.	

Domain: Geometry-Expressing Geometric Properties with Equations

Cluster 1 (Additional): <u>Translate between the geometric description and the equation of a conic section.</u>

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.G-	Derive the equation of a circle of	Page 29; Students will use the	MFAS: Derive
<u>GPE.1.1</u>	given center and radius using the	Pythagorean theorem, the coordinates	<u>the Circle –</u>
	Pythagorean Theorem; complete	of a circle's center, and the circle's	<u>Specific</u>
	the square to find the center and	radius to derive the equation of a	<u>Points</u>
	radius of a circle given by an	circle. Students will determine the	
	equation.	center and radius of a circle given its	Lesson: Circle
		equation in general form. In items	Reasoning
	Content Complexity: Level 2: Basic	where the student has to complete the	
	Application of Skills & Concepts	square to find the center and radius of	
		the circle, coefficients of quadratic	
		terms should equal 1 and all other	
		terms should have integral coefficients.	
		Item assessed with and/or without	
		calculator.	

Cluster 2 (Major): <u>Use coordinates to prove simple geometric theorems algebraically.</u>

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.G-	Use coordinates to prove simple	Page 30; Students will use coordinate	Lesson:
<u>GPE.2.4</u>	geometric theorems algebraically.	geometry to prove simple geometric	What's The
	For example, prove or disprove that	theorems algebraically. Items may	Point?
	a figure defined by four given	require the student to use slope or to	

[a i i i	· · · - · - · · · · · · · · · · · · · ·
	points in the coordinate plane is a rectangle; prove or disprove that the point $(1, \sqrt{3})$ lies on the circle centered at the origin and containing the point $(0, 2)$.	find the distance between points. Items may require the student to prove properties of triangles, properties of quadrilaterals, properties of circles, and properties of regular polygons. Items may require the student to use coordinate geometry to provide steps	<u>MFAS</u> : <u>Describe the</u> <u>Quadrilateral</u>
	Application of Skills & Concepts	to a proof of a geometric theorem.	
		Item assessed with and/or without calculator.	
<u>MAFS.912.G-</u> <u>GPE.2.5</u>	Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point). <u>Content Complexity</u> : Level 2: Basic Application of Skills & Concepts	Page 31; Students will prove the slope criteria for parallel lines. Students will prove the slope criteria for perpendicular lines. Students will find equations of lines using the slope criteria for parallel and perpendicular lines. Lines may include horizontal and vertical lines. Items may not ask the student to provide only the slope of a parallel or perpendicular line.	Lesson: Forget Waldo – Where is the orthocenter? MFAS: Writing Equations for Parallel Lines
		Item assessed with and/or without calculator.	
<u>MAFS.912.G-</u> <u>GPE.2.6</u>	Find the point on a directed line segment between two given points that partitions the segment in a given ratio.	Page 32; Students will find a point on a directed line segment between two given points when given the partition as a ratio.	<u>Original</u> <u>Tutorial</u> : <u>High</u> <u>Tech Seesaw</u>
	<u>Content Complexity</u> : Level 1: Recall	Item assessed with and/or without calculator.	<u>MFAS</u> : <u>Partitioning a</u> <u>Segment</u>
MAFS.912.G- GPE.2.7	Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. 📩	Page 33; Students will use coordinate geometry to find a perimeter of a polygon. Students will use coordinate geometry to find the area of triangles	Lesson: My Geometry Classroom
	Content Complexity: Level 1: Recall	and rectangles. Items may require the use of the Pythagorean theorem. Items may include convex, concave, regular, and/or irregular polygons. In items that require the student to find the area, the polygon must be able to be divided into triangles and rectangles.	MFAS: <u>Perimeter</u> and Area of an Obtuse <u>Triangle</u>
		Item assessed with and/or without calculator.	

Domain: Geometry-Geometric Measurement & Dimension

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.G-	Give an informal argument for the	Page 26; Students will give an informal	Lesson:
GMD.1.1	formulas for the circumference of	argument for the formulas for the	Discovering
	a circle, area of a circle, volume of	circumference of a circle; the area of a	the Formulas
	a cylinder, pyramid, and cone. Use	circle; or the volume of a cylinder, a	for
	dissection arguments, Cavalieri's	pyramid, and a cone.	Circumferenc
	principle, and informal limit		e and Area of
	arguments.	Item assessed with and/or without	a Circle
		calculator.	
	Content Complexity: Level 3:		MFAS:
	Strategic Thinking & Complex		Volume of a
	Reasoning		<u>Pyramid</u>
MAFS.912.G-	Use colume formulas for cylinders,	Page 27; Items may require the student	MFAS: Sports
<u>GMD.1.3</u>	pyramids, cones, and sphere to	to recall the formula for the volume of a	<u>Drinks</u>
	solve problems. ★	sphere. Items may require the student	
		to find a dimension. Items that involve	Lesson:
	Content Complexity: Level 2: Basic	cones, cylinders, and spheres should	Yogurt Land
	Application of Skills & Concepts	require the student to do more than	<u>Container</u>
		just find the volume. Items may include	
		composite figures, including three-	
		dimensional figures previously learned.	
		Items may not include oblique figures.	
		Items may require the student to find	
		the volume when one or more	
		dimensions are changed. Items may	
		require the student to find a dimension	
		when the volume is changed.	
		Item accessed with and (as with as t	
		Item assessed with and/or without	
		calculator.	

Cluster 1 (Additional): *Explain volume formulas and use them to solve problems.*

Cluster 2 (Additional): <u>Visualize relationships between two-dimensional and three-dimensional objects.</u>

Standard Code	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.G-	Identify the shapes of two-	Page 28; Students will identify the	MFAS: <u>Slice It</u>
GMD.2.4	dimensional cross-sections of	shape of a two-dimensional cross-	
	three-dimensional objects, and	section of a three-dimensional object.	<u>Original</u>
	identify three-dimensional objects	Students will identify a three-	Tutorial:
	generated by rotations of two-	dimensional object generated by a	Ninja Nancy
	dimensional objects.	rotation of a two-dimensional object.	<u>Slices</u>
	Content Complexity: Level 2: Basic	Item assessed with and/or without	
	Application of Skills & Concepts	calculator.	

Domain: Geometry-Modeling with Geometry

Standard Code	Ctondord	Clarification (a) 8 According ant Limit(a)	Deseurees
	Standard	Clarification(s) & Assessment Limit(s)	Resources
MAFS.912.G-	Use geometric shapes, their	Page 34; Students will use geometric	MFAS:
<u>MG.1.1</u>	measures, and their properties to	shapes to describe objects found in	Estimating Area
	describe objects (e.g., modeling a	the real world. Students will use	
	tree trunk or a human torso as a	measures of geometric shapes to find	STEM Lesson:
	cylinder). 📩	the area, volume, surface area,	Interchangeable
		perimeter, or circumference of a	<u>Wristwatch</u>
	Content Complexity: Level 1:	shape found in the real world.	<u>Band</u>
	Recall	Students will apply properties of	
		geometric shapes to solve real-world	
		problems.	
		Item assessed with and/or without	
		calculator.	
MAFS.912.G-	Apply concepts of density based	Page 35; Students will apply concepts	MFAS: How
<u>MG.1.2</u>	on area and volume in modeling	of density based on area in modeling	Many Trees?
	situations (e.g., persons per	situations. Students will apply	
	square mile, BTUs per cubic foot).	concepts of density based on volume	Lesson:
	*	in modeling situations.	Propensity for
	_		<u>Density</u>
	Content Complexity: Level 2: Basic	Item assessed with and/or without	
	Application of Skills & Concepts	calculator.	
MAFS.912.G-	Apply geometric methods to solve	Page 36; Items may require the	MFAS: Softball
MG.1.3	design problems (e.g., designing	student to use knowledge of other	Complex
	an object or structure to satisfy	Geometry standards.	
	physical constraints or minimize		Lesson: The
	cost; working with typographic	Item assessed with and/or without	Grass is Always
	grid systems based on ratios). ★	calculator.	Greener
	Content Complexity: Level 3:		
	Strategic Thinking & Complex		
	Reasoning		

Cluster 1 (Major): <u>Apply geometric concepts in modeling situations.</u>

Geometry Resources

Course Descriptions, Standards, and Resources

- Geometry Course Description
- <u>Geometry Honors Course Description</u>
- Geometry Student Resources
- <u>Text Complexity Resources</u>
- Florida Assessments for Instruction in Mathematics (FAIM)
- <u>Student Support Resources</u>
- Parent Support Resources

Florida Standards Assessment Assistance

- <u>Test Item Specifications</u>
- Test Design Summary and Blueprint
- FSA Fact Sheet
- <u>Calculator and Reference Sheet Policy</u>
- <u>Reference Sheet</u>
- Understanding FSA Reports