Grade 7 Mathematics Instructional Toolkit

The Grade 7 Mathematics Instructional Toolkit is intended to assist teachers with planning instruction aligned to the Florida Standards. This toolkit is not intended to replace your district's curriculum, but rather it serves to support the teaching and learning of the grade 7 Mathematics Florida Standards. This toolkit includes a breakdown of information related to the Grade 7 Mathematics Florida Standards Assessment (FSA), CPALMS and Florida Students, the Grade 7 Mathematics Florida Standards aligned resources.

Grade 7 Mathematics Florida Standards Assessment

This section highlights some key information related to the Grade 7 Mathematics FSA that can be found on the <u>FSA Portal</u>. These items include the Test Design Summary and Blueprint, Test Item Specifications and FSA Practice Tests.

Test Design Summary and Blueprint

The grade 7 mathematics standards can be broken down into five major reporting categories as assessed on the Grade 7 Mathematics FSA with a corresponding weight. This information can also be found on page 5 of the <u>Test</u> <u>Design Summary and Blueprint</u>.

- Ratio and Proportional Relationships (25%)
- The Number System (15%)
- Expressions and Equations (21%)
- Geometry (23%)
- Statistics and Probability (16%)

Test Item Specifications

The grade 7 <u>Test Item Specification Document</u> indicates the alignment of items with the Florida Standards. Assessment limits are included in the specifications, which define the range of content knowledge in the assessment items for the standard. In addition to limits, each item specification identifies whether or not that item could appear in the calculator allowed test session or no calculator allowed test session. Sample items for each standard are also included in the specifications document. Each standard in this toolkit lists the corresponding page number in the specifications document along with any assessment limits and allowable calculator use.

Practice Tests

<u>Practice Tests</u> are available for students to become familiar with the various item types that may be used on the Grade 7 Mathematics FSA. Within the Test Item Specification document, page 40, is a chart aligning standards to each item type and item number on the Computer-Based Practice Test. Each Computer-Based Practice Test is provided with an <u>answer key</u>. It is important to note that students are not permitted to use a calculator of any kind on Session 1 of the Grade 7 Mathematics FSA. Students will be permitted a scientific calculator on all other sessions. For information regarding usage of calculators, please see the <u>Calculator and Reference Sheet Policy</u> page on the FSA portal.

CPALMS: Official Source of Florida Standards

This section features information and tools that are found on <u>CPALMS</u>.

Grade 7 Mathematics Course Description

The <u>Grade 7 Mathematics Course Description</u> provides an overview for the course with standards aligned resources for educators, students, and parents.

Mathematics Formative Assessment System (MFAS)

One resource available on CPALMS that has been designed specifically for mathematics instruction is the <u>Mathematics Formative Assessment System (MFAS</u>). The system includes a task or problem that teachers can implement with their students. It also includes various levels of rubrics that help the teacher interpret students' responses. In addition to using the MFAS tasks as formative assessments for students, these tasks can be used by teachers to plan lessons that are closely aligned to the standards.

Model Eliciting Activity (MEAs)

<u>Model Eliciting Activities (MEAs)</u> are open-ended, interdisciplinary problem-solving activities that are meant to reveal students' thinking about the concepts embedded in these realistic activities. Students will work in teams to apply their knowledge of mathematics and science while considering constraints and tradeoffs. Each MEA is aligned to at least two subject areas, including mathematics, English language arts and/or literacy in the content areas, and science.

Mathematical Practices

The Mathematical Practices are habits of mind that describe varieties of expertise that mathematics educators at all levels should seek to develop in their students. The Mathematical Practices should be infused during the course and will be assessed throughout the Grade 7 Mathematics FSA. More information about each Mathematical Practice can be found by clicking on the links below.

MAFS.K12.MP.1.1 Make sense of problems and persevere in solving them.

MAFS.K12.MP.2.1 Reason abstractly and quantitatively.

MAFS.K12.MP.3.1 Construct viable arguments and critique the reasoning of others.

MAFS.K12.MP.4.1 Model with mathematics.

MAFS.K12.MP.5.1 Use appropriate tools strategically.

MAFS.K12.MP.6.1 Attend to precision.

MAFS.K12.MP.7.1 Look for and make use of structure.

MAFS.K12.MP.8.1 Look for and express regularity in repeated reasoning.

Depth of Knowledge

Florida has adopted Webb's four-level Depth of Knowledge (DOK) model of content complexity as a means of classifying the cognitive demand presented by the Florida standards. It is important to distinguish between the DOK rating for a given standard and the possible DOK ratings for assessment items designed to address the standard. This is particularly important for assessment purposes, since 50% or more of assessment items associated with a given standard should meet or exceed the DOK level of the standard. The DOK Levels are identified for each standard throughout this document. Please visit the <u>CPALMS Content Complexity</u> page for more information about the DOK complexity for standards. For more information about the DOK complexity for standards. For more information about the DOK complexity for <u>Portal</u>.

Florida Students

Resources specifically designed with students in mind are available on <u>Florida Students</u>. Florida Students is an interactive site that provides educational resources and student tutorials aligned to the Florida Standards. This site should not be used as a lesson guide, but rather a tool to help students obtain mastery in various mathematical concepts.

Grade 7 Mathematics Florida Standards

This section includes a breakdown of each standard by domain and cluster. Standards should not be taught in the order below. To do so would strip the coherence of the mathematical ideas and miss opportunity to enhance the major work of the grade with the supporting clusters and/or standards. In addition to the breakdown, each standard has the corresponding DOK Level, and assessment limits with page number in the <u>Grade 7 Mathematics</u> <u>Item Specification</u>.

Domain: Ratio and Proportion

Cluster 1 (Major): <u>Analyze proportional relationships and use them to solve real-world and mathematical</u> problems.

Standard Code	Standard	Assessment Limit(s)	Resources
<u>MAFS.7.RP.1.1</u>	Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks 1/2 mile in each 1/4 hour, compute the unit rate as the complex fraction 1/2/1/4 miles per hour, equivalently 2 miles per hour. <u>Content Complexity</u> : DOK Level 2: Basic Application of Skills & Concepts	Page 10; The item stem must include at least one fraction. Ratios may be expressed as fractions, with ":" or with words. Units may be the same or different across the two quantities.	MFAS: Computing Unit Rates Lesson: For Students by Students
<u>MAFS.7.RP.1.2</u>	 Recognize and represent proportional relationships between quantities. a) Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin. b) Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships. c) Represent proportional relationships. c) Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as t = pn. 	Page 11-13; Ratios should be expressed as fractions, with ":" or with words. Units may be the same or different across the two quantities.	MFAS: Finding Constant of Proportionality Lesson: Are Corresponding Leaf Veins Proportional to Leaf Height?

	 d) Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points (0, 0) and (1, r) where r is the unit rate. 		
	<u>Content Complexity</u> : DOK Level 2: Basic Application of Skills & Concepts		
MAFS.7.RP.1.3	Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.	Page 14; Units may be the same or different across the two quantities.	MFAS: Finding Fees Lesson: Invest in Your Education
	Content Complexity: DOK Level 2: Basic Application of Skills & Concepts		

Domain: The Number System

Cluster 1 (Major): <u>Apply and extend previous understandings of operations with fractions to add, subtract,</u> <u>multiply, and divide rational numbers.</u>

Standard Code	Standard	Assessment Limit(s)	Resources
MAFS.7.NS.1.1	Apply and extend previous understandings of	Page 15-17; N/A	MFAS: Rational
	addition and subtraction to add and subtract		<u>Water</u>
	rational numbers; represent addition and		Management
	subtraction on a horizontal or vertical number		
	line diagram.		Lesson:
	<i>a)</i> Describe situations in which opposite		Discovering How
	quantities combine to make 0. For example,		to Subtract
	a hydrogen atom has 0 charge because its		<u>Rational</u>
	two constituents are oppositely charged.		<u>Numbers</u>
	<i>b)</i> Understand p + q as the number located a		
	distance q from p, in the positive or		
	negative direction depending on whether q		
	is positive or negative. Show that a number		
	and its opposite have a sum of 0 (are		
	additive inverses). Interpret sums of		
	rational numbers by describing real-world contexts.		
	c) Understand subtraction of rational		
	numbers as adding the additive inverse, p –		
	q = p + (–q). Show that the distance		
	between two rational numbers on the		
	number line is the absolute value of their		
	difference, and apply this principle in real- world contexts.		
	<i>d</i>) Apply properties of operations as strategies		
	to add and subtract rational numbers.		

	<u>Content Complexity</u> : DOK Level 2: Basic Application of Skills & Concepts		
MAFS.7.NS.1.2	 Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers. a) Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as (-1)(-1) = 1 and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts. b) Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then -(p/q) = (-p)/q = p/(-q). Interpret quotients of rational numbers by describing real-world contexts. c) Apply properties of operations as strategies to multiply and divide rational numbers. d) Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0s or eventually repeats. <u>Content Complexity</u>: DOK Level 2: Basic Application of Skills & Concepts 	Page 18-19; 7.NS.1.2a, 2b, and 2c require the incorporation of a negative value.	MFAS: Negative Times Original Tutorial: Why Does a Negative Times a Negative Equal a Positive?
<u>MAFS.7.NS.1.3</u>	Solve real-world and mathematical problems involving the four operations with rational numbers. <u>Content Complexity Rating</u> : DOK Level 2: Basic Application of Skills & Concepts	Page 20; Numbers in items must be rational numbers. Complex fractions may be used, but should contain fractions with single- digit numerators and denominators.	MFAS: Monitoring Water Temperatures Lesson: Cool Uniforms
		and/or without calculator.	

Domain: Expressions and Equations

Standard Code	Standard	Assessment Limit(s)	Resources
MAFS.6.EE.1.1	Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.	Page 21; Expressions must be linear and contain a variable.	<u>MFAS</u> : <u>Equivalent</u> <u>Rational</u> <u>Expressions</u>
	Content Complexity: DOK Level 1: Recall	Item assessed with calculator.	<u>Lesson</u> : <u>Total</u> <u>Recall</u>
<u>MAFS.6.EE.1.2</u>	Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, $a + 0.05a = 1.05a$ means that "increase by 5%" is the same as "multiply by1.05".	Page 22; Expressions must be linear Item assessed with and/or without calculator.	MFAS: Explain Equivalent Expressions Original Tutorial:
	Content Complexity: DOK Level 2: Basic Application of Skills & Concepts		<u>Math Soup</u>

Cluster 1 (Major): <u>Use properties of operations to generate equivalent expressions.</u>

Cluster 2 (Major): <u>Solve real-life and mathematical problems using numerical and algebraic expressions and equations.</u>

Standard Code	Standard	Assessment Limit(s)	Resources
MAFS.7.EE.2.3	Solve multi-step real-life and mathematical	Page 23; Items should	MFAS: Gas
	problems posed with positive and negative	not use variables.	Station Equations
	rational numbers in any form (whole numbers,	Items should require	
	fractions, and decimals), using tools	two or more steps.	Lesson: Math in
	strategically. Apply properties of operations to		<u>Mishaps</u>
	calculate with numbers in any form; convert	Item assessed with	
	between forms as appropriate; and assess the	calculator.	
	reasonableness of answers using mental		
	computation and estimation strategies. For		
	example: If a woman making \$25 an hour gets		
	a 10% raise, she will make an additional 1/10		
	of her salary an hour, or \$2.50, for a new		
	salary of \$27.50. If you want to place a towel		
	bar 9 3/4 inches long in the center of a door		
	that is 27 1/2 inches wide, you will need to		
	place the bar about 9 inches from each edge;		
	this estimate can be used as a check on the		
	exact computation.		
	Content Complexity: Level 2: Basic Application		
	of Skills & Concepts		
MAFS.7.EE.2.4	Use variables to represent quantities in a real-	Page 24; Inequalities	MFAS: <u>Recycled</u>
	world or mathematical problem, and construct	must have context.	Inequalities
	simple equations and inequalities to solve	Inequalities may use ≤	
	problems by reasoning about the quantities.	or ≥. Inequalities may	Lesson: Inequal-

a) Solve word problems le		not be compound	<u>tiles-ies</u>
of the form px + q = r ar		inequalities.	
where p, q, and r are sp			
numbers. Solve equatio		Item assessed with	
fluently. Compare an al		calculator.	
an arithmetic solution, i			
sequence of the operation			
approach. For example,			
rectangle is 54 cm. Its le	ngth is 6 cm. What		
is its width?			
b) Solve word problems le	-		
inequalities of the form			
< r, where p, q, and r ar	•		
numbers. Graph the sol			
inequality and interpret			
the problem. For examp			
salesperson, you are pa			
plus \$3 per sale. This we			
pay to be at least \$100.			
inequality for the numb			
need to make, and desc	ribe the solutions.		
<u>Content Complexity</u> : Level 2	: Basic Application		
of Skills & Concepts			

Domain: Geometry

Cluster 1 (Additional): <u>Draw, construct, and describe geometrical figures and describe the relationships between</u> <u>them.</u>

Standard Code	Standard	Assessment Limit(s)	Resources
MAFS.7.G.1.1	Solve problems involving scale drawings of	Page 25-26; Geometric	MFAS: Flying
	geometric figures, including computing actual	figures must be two-	<u>Scale</u>
	lengths and areas from a scale drawing and	dimensional polygons.	
	reproducing a scale drawing at a different scale.		Lesson:
		Item assessed with	Designing Geo-
	Content Complexity: Level 2: Basic Application	calculator.	<u>World</u>
	of Skills & Concepts		
MAFS.7.G.1.2	Draw (freehand, with ruler and protractor, and	Page 27; Given	MFAS: Sides of
	with technology) geometric shapes with given	conditions should not	Triangles
	conditions. Focus on constructing triangles	focus on similarity or	
	from three measures of angles or sides,	congruence or that the	Lesson: Triangle
	noticing when the conditions determine a	sum of angles in a	<u>Inequality</u>
	unique triangle, more than one triangle, or no	triangle is 180 degrees.	Investigation
	triangle.	Be aware of the scoring	
		capabilities for the	
	Content Complexity: Level 2: Basic Application	GRID tool when	
	of Skills & Concepts	designing these items.	

MAFS.7.G.1.3	Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids. <u>Content Complexity</u> : Level 2: Basic Application of Skills & Concepts	To distinguish from other grades, conditions should include factors other than parallel or perpendicular lines and angle measure, such as symmetry and side length. Item assessed with and/or without calculator. Page 28; Spheres, cones, and cylinders are allowed. Slicing is limited to horizontal or vertical slices. Bases of prisms and pyramids can be a triangle (any type); a square; a rectangle; or a regular pentagon or hexagon. Item assessed with and (any ith out	MFAS: Cone Slices Lesson: Can You Cut It?
		Item assessed with and/or without calculator.	

Cluster 2 (Additional): <u>Solve real-life and mathematical problems involving angle measure, area, surface area, and</u> <u>volume.</u>

Standard Code	Standard	Assessment Limit(s)	Resources
MAFS.7.G.2.4	Know the formulas for the area and	Page 29; Circles are	MFAS: Center
	circumference of a circle and use them to solve	limited to whole circles	Circle Area
	problems; give an informal derivation of the	and semicircles.	
	relationship between the circumference and		Original Tutorial:
	the area of a circle.	Item assessed with	Swimming in
		calculator.	<u>Circles</u>
	Content Complexity: Level 2: Basic Application		
	of Skills & Concepts		
MAFS.7.G.2.5	Use facts about supplementary,	Page 30; Items should	MFAS: What Is
	complementary, vertical, and adjacent angles in	use angles measured in	Your Angle?
	a multi-step problem to write and solve	degrees only.	
	equations for an unknown angle in a figure.		Lesson: Angles,
		Item assessed with	angles,
	Content Complexity: Level 2: Basic Application	calculator.	everywhere!
	of Skills & Concepts		

MAFS.7.G.2.6	Solve real-world and mathematical problems	Page 31; Three-	MFAS: Chilling
	involving area, volume and surface area of two-	dimensional shapes	<u>Volumes</u>
	and three-dimensional objects composed of	may include right	
	triangles, quadrilaterals, polygons, cubes, and	prisms and right	Lesson:
	right prisms.	pyramids. When the	Aquarium Splash
		base of a figure has	
	Content Complexity: Level 2: Basic Application	more than four sides,	
	of Skills & Concepts	the area of the base	
		must be given.	
		Item assessed with	
		calculator.	

Domain: Statistics & Probability

Cluster 1 (Supporting): Use random sampling to draw inferences about a population.

Standard Code	Standard	Assessment Limit(s)	Resources
<u>MAFS.7.SP.1.1</u>	Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.	Page 32-33; Numbers in item must be rational numbers. Context must be grade appropriate. Item assessed with and/or without calculator.	MFAS: Favorite Sport Survey Lesson: Populations and Samples
	<u>Content Complexity</u> : Level 2: Basic Application of Skills & Concepts		
<u>MAFS.7.SP.1.2</u>	Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. For example, estimate the mean word length in a book by randomly sampling words from the book; predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be.	Page 32-33; Context must be grade appropriate. Item assessed with and/or without calculator.	MFAS: Prediction Predicament Lesson: Pick Me! Pick Me!
	<u>Content Complexity</u> : Level 3: Strategic Thinking & Complex Reasoning		

Cluster 2 (Additional): <u>Draw informal comparative inferences about two populations.</u>

Standard Code	Standard	Assessment Limit(s)	Resources
MAFS.7.SP.2.3	Informally assess the degree of visual overlap	Page 34; N/A	MFAS: TV Ages -
	of two numerical data distributions with similar		<u>1</u>

	variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. For example, the mean height of players on the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the variability (mean absolute deviation) on either team; on a dot plot, the separation between the two distributions of heights is noticeable. <u>Content Complexity</u> : Level 2: Basic Application of Skills & Concepts	Item assessed with and/or without calculator.	<u>Lesson</u> : <u>Who's</u> <u>Taller?</u>
<u>MAFS.7.SP.2.4</u>	Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. For example, decide whether the words in a chapter of a seventh-grade science book are generally longer than the words in a chapter of a fourth- grade science book. <u>Content Complexity Rating</u> : Level 2: Basic Application of Skills & Concepts	Page 34; N/A Item assessed with and/or without calculator.	MFAS: Overlapping Trees Lesson: Brr! How Cold is the Antarctic?

Cluster 3 (Supporting): Investigate chance processes and develop, use, and evaluate probability models.

Standard Code	Standard	Assessment Limit(s)	Resources
<u>MAFS.7.SP.3.5</u>	Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around 1/2 indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.	Page 35; N/A Item assessed with and/or without calculator.	MFAS: Likelihood of an Event Original Tutorial: Introduction to Probability
MAFS.7.SP.3.6	<u>Content Complexity</u> : Level 1: Recall Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times. <u>Content Complexity</u> : Level 2: Basic Application of Skills & Concepts	Page 36; Long-run frequency should be greater than or equal to 300. Item assessed with and/or without calculator.	MFAS: <u>Hen Eggs</u> <u>Virtual</u> <u>Manipulative</u> : <u>Spinners</u>

	De ale a contrata la la la contrata de la contrata	D	
	Develop a probability model and use it to find	Page 37-39; N/A	MFAS: Errand
	probabilities of events. Compare probabilities		<u>Runner</u>
	from a model to observed frequencies; if the	Item assessed with	
	agreement is not good, explain possible sources	and/or without	Lesson: M&M
	of the discrepancy.	calculator.	Candy: I Want
	a) Develop a uniform probability model by		<u>Green</u>
	assigning equal probability to all outcomes,		
	and use the model to determine		
	probabilities of events. For example, if a		
	student is selected at random from a class,		
	find the probability that Jane will be		
	selected and the probability that a girl will		
	be selected.		
	b) Develop a probability model (which may		
	not be uniform) by observing frequencies in		
	data generated from a chance process. For		
	example, find the approximate probability		
	that a spinning penny will land heads up or		
	that a tossed paper cup will land open-end		
	down. Do the outcomes for the spinning		
	penny appear to be equally likely based on		
	the observed frequencies?		
	the observed frequencies:		
	Content Complexity: Level 3: Strategic Thinking		
	& Complex Reasoning		
	Find probabilities of compound events using	Page 37-39; N/A	MFAS:
	organized lists, tables, tree diagrams, and		Automotive
	simulation.	Item assessed with	Probabilities
	a) Understand that, just as with simple	and/or without	TODADIIICICS
	events, the probability of a compound	calculator.	
	event is the fraction of outcomes in the		Lesson: Chancy
	sample space for which the compound		Candy
	event occurs.		Canay
1	 <i>b)</i> Represent sample spaces for compound events using methods such as organized 		
	lists, tables and tree diagrams. For an event		
	described in everyday language (e.g.,		
	"rolling double sixes"), identify the		
	outcomes in the sample space which		
	compose the event.		
	c) Design and use a simulation to generate		
	frequencies for compound events. For		
			1
	example, use random digits as a simulation		
	tool to approximate the answer to the		
	tool to approximate the answer to the question: If 40% of donors have type A		
	tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that it will		
	tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that it will take at least 4 donors to find one with type		
	tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that it will		
	tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that it will take at least 4 donors to find one with type		

	of Skills & Concepts		
--	----------------------	--	--

Grade 7 Mathematics Resources

Course Descriptions, Standards, and Resources

- Grade 7 Mathematics Course Description
- Grade 7 Advanced Mathematics Course Description
- Grade 7 Math Student Resources
- <u>Text Complexity Resources</u>
- Florida Assessments for Instruction in Mathematics (FAIM)
- <u>Student Support Resources</u>

Florida Standards Assessment Assistance

- <u>Test Item Specifications</u>
- Test Design Summary and Blueprint
- FSA Fact Sheet
- <u>Calculator and Reference Sheet Policy</u>
- <u>Reference Sheet</u>
- Understanding FSA Reports