FCAT Topics
 Sunshine State Standards, Grades 3-5

Social Studies

History

- Historical Chronology
individuals and events
primary and secondary sources: maps and graphs, letters, and newspapers measurement of time
- History from Its Beginning to the Renaissance government
achievements up to the Renaissance
trade and exploration
Middle Ages (development)
scientific achievements
transportation and communication social structures
- Civilization Since the Renaissance individual contributions to society humanities since the Renaissance government and laws
Age of Discovery
- U.S. History to 1880
implications of American exploration
American Revolution
ideas and documents
growth and change 1801 to 1861
Civil War
- U.S. History from 1880 to Present Day implications of World War I
Great Depression
implications of World War II
- Florida Immigration and Implications

Geography

- Geographic Tools
- Implications of Physical Environment

Government

- Functions of All Branches of American Government
- Implications of Citizenship in American Democracy

Economics

- Consumer Rights
- Earning and Spending

Science

- Nature of Matter
- Properties of Matter
tools of comparison
states, weights, combinations
organizations
- Energy
- Forms and Transformation of Energy
- Heat
- Energy and Uses
- Force and Motion
- Motion and Wave
- Forces of Gravity, Magnetism, Electricity
- Processes That Shape Earth
- Substances and Processes in the Lithosphere, Atmosphere, Hydrosphere, and Biosphere
- Recycling
- Interaction and Organization of the Solar System
- Patterns of Structure and Function of Living Things
- Process and Importance of Nature and Nurture
- Interaction of Living Things
- Nature of Living Things
- Nature of Science
- Scientific Process of Solving Problems

The Arts

Music

- Cultural and Historical Connections
- Music Types and Composers
- Relationship Between Music, the Other Arts, and Disciplines Outside the Arts
- Relationship Between Music and the World

FCAT Topics Sunshine State Standards, Grades 3-5

Visual Arts

- Tools and Techniques of the Visual Arts
- Visual Arts in Relation to Culture and History
- Criteria to Evaluate Characteristics of Works of Art
- Influences of Artists

Theater

- Theater Environment
- Cultural Traditions of Dance in Various Cultures and Historical Periods

Health/ Physical Education

Health Education

- Health Promotion and Disease Prevention
- Strategic Behaviors That Reduce Health Risks
- Factors That Influence Health
- Promotion of Healthy Living

Physical Education

- Specialized Techniques of Human Movement
- Benefits of Physical Activity

Foreign Language

- Cultural Practices
- Patterns of Communication

Literature

- Types of Mass Media
- Techniques Used in Media Messages
- Technologies for Communication
- Fables, Stories, Legends
- Drama, Poetry

FCAT Topics
 Sunshine State Standards, Grades 6-8

Social Studies

History

- Historical Chronology
patterns and chronology of historical periods
primary and secondary sources: charts, tables, graphs
timelines
- History from Its Beginning to the Renaissance influence of one culture on other cultures major historical developments important technological developments impact of geographical factors
historical leaders
major events
significant achievements up to the time of the Renaissance
institutions that characterize civilizations
- Civilization Since the Renaissance
transmitted cultural characteristics
historical events shaping culture
physical and human geographic factors
significant historical leaders since the
Renaissance
differences between Eastern and Western civilizations
- U.S. History to 1880
development of cities and industries environmental influences on the colonies, the

American Revolution, and the Civil War
U.S. values and traditions prior to 1880
U.S. influences on Native American peoples

- U.S. History from 1880 to Present Day
physical and cultural geography since 1880
individuals and events after 1880
causes and consequences of urbanization
- History of Florida and Its People
immigration and the history of Florida
geographic and demographic characteristics of Florida
environment of Florida modified by inhabitants
influence of societies and cultures on Florida's
history
Florida's use of resources

Geography

- World in Spatial Terms
geographic representations, tools, and technologies
Earth's varied surface divisions regional interconnections communication and transportation systems
- Interaction of People and Environment
migration and diffusion characteristics of different places geographical factors that affect countries environmental consequences of change response to physical environment resource distribution and utilization

Government

- American Constitutional Government essential American constitutional government importance of government legislative, executive, and judicial branches major parts of the federal system organization of state and local governments importance of the rule of law
- Rights, Liberties, and Obligations of American

Democracy
limits on rights
personal, political, and economic rights
method to contact representatives
importance of participation
current issues

Economics

- Consumer Protection
- Credit
- Wise Consumer Decisions
- Different Economic Systems
production and distribution market system
specialized institutions in market economies

FCAT Topics
 Sunshine State Standards, Grades 6-8

Science

- Nature of Matter
- Properties of Matter
ways substances differ
weight and mass
temperature
movement of atoms
difference between physical and chemical change
volume and mass
- Basic Principles of Atomic Theory
particles and waves
general properties of the atom
- Forms of Energy
energy as a constant
forms of energy from the sun
energy conversions
thermal energy
the properties of waves
- Interaction of Matter, Energy, and Force
reduction in the amount of useful energy
fossil fuels
- Motion
description of motion of an object
vibrations in materials
- Forces and Effects
forces at a distance
ability of forces to reinforce or cancel each other, depending upon direction and magnitude machines
nature of inertia
ways in which a net force can act upon an object
gravity
- Processes in the Lithosphere, Atmosphere,

Hydrosphere, and Biosphere
erosion
life process of organisms
plants and animals reshape the landscape
concepts of time and size

- Protection of the Natural Systems
- Consequences of Human Action on Earth's Systems
- The Interaction and Organization of the Solar System
- Properties of Stars That Appear to Be Made of Similar Elements
- Vastness of the Universe and Earth's Role comparison of other galaxies to our solar system
- Patterns of Structure and Function
structural basis of most organisms
properties of multi-cellular organisms
cells grow and divide
life functions of organisms
similar structures of cells with similar functions
behavioral responses to environment
- Process and Importance of Genetic Diversity
variation is due to genetic information
survival of organisms because of favorable characteristics
fossil records
- Nature of Living Things
viruses
classification as a tool for understanding biodiversity and interrelationships
interactions of organisms with each other and their environment
support of life by energy from the sun and the
recycling of living organisms
- Consequences of Limited Resources
renewable resources
biotic and abiotic factors
effects of changes on organisms
humans as a part of an ecosystem
- Scientific Process of Solving Problems
modification of scientific knowledge
the inquiry process
differences among science disciplines
scientific method
- Patterns of Natural Events
- Interdependence of Science, Technology, and Society

The Arts

Music

- Cultural and Historical Connections
- Music in Relation to Culture and History main characteristics representative examples important composers and musicians

FCAT Topics
 Sunshine State Standards, Grades 6-8

The Arts (continued)

- Relationship Between Music, the Other Arts, and Disciplines Outside the Arts
- The Relationship Between Music and the World influence of music experiences music in various cultures the uniqueness of music

Visual Arts

- Ways of Conveying Meanings
- Qualities and Characteristics of Art
- Multiple Purposes of Art
- Art's Interrelationships
- Visual Arts in Relation to Culture and History
historical and cultural themes
artist and his or her function
- Aesthetic and Critical Analysis
art standards
research and information to identify art artists' intentions
- Connections Between Visual Arts and the Real World
artistic skills and development roles of exhibitions

Theater

- Cultural and Historical Connections
- Context of Media Past and Present social and universal concepts in theater social impact of history and culture representative artists
- Analysis, Criticism, and Construction of Meanings from Theater and Electronic Media internal characterization, plot, conflict, and theme evaluation of texts and performances
- Applications of the Theater and Electronic Media to Daily Life
media influence
audience reactions
pertinent skills
significant contributors

Dance

- Dance in Various Cultures and Historical Periods historical role of dance similarities and differences among social dances
- Aesthetic and Critical Analysis
- Connections Between Dance and Healthy Living
- Connections Between Dance and Other Disciplines ideas expressed in dance

Health/ Physical Education

Health Education

- Concepts of Health Promotion and Disease Prevention
body systems
health interrelationships
environment and health risks
eating disorders
- Access to Health Information, Products, and

Services
information analysis
resources
health products
health services

- Responsible Health Behavior
- Factors on Health information evaluation
- Promotion of Healthy Living
- Goals and Decisions That Affect Health
strategies and skills
needs assessments
- Personal, Family, and Community Health

Physical Education

- Concepts and Principles of Human Movement generation of force by the body
sports skills
movement to music
development of game strategies

FCAT Topics
 Sunshine State Standards, Grades 6-8

Physical Education (continued)

- Analyzes the Benefits of Physical Activity
fitness benefits
use of a journal
community resources
- Responsible Physical Activity Behaviors
- Methods to Achieve and Maintain a Healthy Level of Physical Fitness
aerobic activity
training principles
strength and endurance
caloric intake and energy expenditures
method to determine heart rate
formal and informal fitness assessments
participation in fitness program
explores new ways to maintain appropriate fitness
- Responsible Personal and Social Behavior in Physical Activity
appropriate responses to emergencies
- Diversity of Abilities and Cultures in Activities
modification for special needs
cultural contributions
- Method of Enjoyment and Communication Through

Physical Activities
physical activity for personal enjoyment
commitment to wellness enhances life
benefits from physical activity

Foreign Language

- Cultural Practices
verbal communication
cultural activities
various forms of the culture
- Patterns of Interaction
cultural traditions
cultural similarities and differences

Literature

- Multiple Media Tools of Graphics
- Communication in Television, Film, Radio, and Advertising
- Audiovisual Aids
- Mass Media Can Manipulate Information

FCAT Topics
 Sunshine State Standards, Grades 9-10

Social Studies

History

- Historical Chronology
roles of ideas, beliefs, and chance events in interpreting history
scientific, economic, and cultural themes chronology, sequencing patterns
- History from Its Beginning to the Renaissance human cultural development
early civilization and the spread of agriculture emergence of civilization
economic, political, and social systems of ancient
Greece
political, economic, and social systems of ancient
Rome
European civilization during the Middle Ages civilizations in Asia and Africa civilizations in Mesoamerica and Andean South

America
Mongol Empire

- Civilization Since the Renaissance
significant events during the Renaissance
significant issues from Renaissance through
Reformation
general social interactions during the Age of Discovery
changes from Age of Reason through the Age of
Enlightenment
19th century European developments
Industrial Revolution
historical events 1900-1950
political, military, and economic events since the 1950s
- U.S. History to 1880
interactions between Native American tribes and European settlers
settlement patterns of the colonies
American Revolution
Constitutional period
Civil War and Reconstruction
- U.S. History from 1880 to Present Day

Industrial Revolution and its effects
immigration groups after 1880
involvement in World War I
Great Depression
World War II
foreign policy since World War II
voting rights since the 1950s
domestic policy in contemporary America

Geography

- World in Spatial Terms
maps
cultural and technological characteristics of regions
- Interaction of People and Environment past and present trends in human migration interactions between people in different regions global impacts of human changes sustainable development

Government

- American Constitutional Government society in limited governments (constitutional democracies) and unlimited governments (totalitarian regimes)
limited government in the United States overall design and specific features of the Constitution development of public policy and the political process
- Citizens in American Democracy
political beliefs
issues
personal, political, and economic rights reinforce each other
citizens' influence on public policy

Economics

- Use of Available Resources
allocation of resources
credit
- Different Economic Systems
determination of wages and prices
price changes
taxes, policies, and programs
United States fiscal policies

FCAT Topics
 Sunshine State Standards, Grades 9-10

Economics (continued)
basic terms and indicators
trade between nations

Science

- Nature of Matter
- Properties of Matter
electron configuration
diversity of materials due to molecular forces
energy change in phases of matter
atomic and molecular change
procedures involved in substance change
- Basic Principles of Atomic Theory
differences between an element, a molecule, and a compound
composition of elements nuclear energy
different behaviors of different forms of matter
- Energy
- Forms of Energy
importance of knowledge of energy to all scientific disciplines
conservation of mass and energy
temperature
electrical charges
first law of thermodynamics
decrease of usable energy
- Current Theories of the Structure of the Universe
- Motion
relativity of motion
inertia
velocity
- Forces and Motion
- Forces and Effects
gravity
electrical force
magnetic and electrical force
nuclear power
forces between atoms and molecules
action and reaction
- Processes That Shape Earth
- Processes in the Lithosphere, Atmosphere, Hydrosphere, and Biosphere
climatic patterns
the structure of Earth's crust
Earth's change over time
- Protection of the Natural Systems interconnectedness of Earth's systems
- Interaction and Organization of the Solar System relationship between Earth and the solar system characteristics of planets and satellites
- Vastness of the Universe and Earth's Role stages in development of three categories of stars bodies within and outside our galaxy astronomical distance and time stellar equilibrium ways scientists collect and generate data about the universe
- Patterns of Structure and Function
body structures and functions
the function of membranes
biological systems
complex interactions
communication between the separate parts of the body
stimulus response
- Process and Importance of Genetic Diversity
mechanisms of change
- Nature of Living Things
diversity and interdependence of living things chemical composition of molecules
- Consequences of Limited Resources
fossil fuels
equilibrium
world ecosystems
carrying capacity
- Nature of Science
- Scientific Process of Solving Problems
scientific investigation
development of new ideas in science
- Patterns of Natural Events
discovery of rules by careful, systematic study

FCAT Topics
 Sunshine State Standards, Grades 9-10

Science (continued)

- Interdependence of Science, Technology, and Society
technological problems and the demand for new scientific knowledge
possible causes and effects of events influence of funding on the area of discovery social context of the value of a technology uses of scientific knowledge

The Arts

Music

- Cultural and Historical Connections
- Music in Relation to Culture and History characteristics of unfamiliar music development of American music influence of composers and performers
- Aesthetic and Critical Analysis
- Relationship Between Music, the Other Arts, and Disciplines Outside the Arts connections with other subjects artistic tradition and cultural context
- Relationship Between Music and the World

Visual Arts

- Subjects, Symbols, and Ideas of Visual Arts
- Media, Techniques, and Processes of Visual Arts
- Implications of Art
- Visual Arts in Relation to Culture and History influences on art
- Aesthetic and Critical Analysis of the Characteristics of Works of Art
differences between artist's intent and public interpretation critical and aesthetic statements
- Connections Between Visual Arts and the Real World
creative skills and elaboration within the arts and across life
aesthetic questions

Theater

- Cultural and Historical Connections
- Context of Media from Past and Present cultural and historical influences
- Applications of the Theater and Electronic Media to Daily Life
arts media communication audience reactions theatrical production responsibilities

Dance

- Cultural and Historical Connections
- Dance in Various Cultures and Historical Periods significant historical events impact of society and history changing role in culture
- Aesthetic and Critical Analysis
- Connections Between Dance and Healthy Living
- Connections Between Dance and Other Disciplines use of technology to study expression of ideas through dance
comparison of historical and cultural images with contemporary media

Health/ Physical Education

Health Education

- Concepts of Health Promotion and Disease

Prevention
health interrelationships
environmental health
influence of health research on solution of health problems
nutrition

- Access to Health Information, Products and Services
- Responsible Health Behavior
- Health Factors
- Goals and Decisions That Affect Health various strategies
- Personal, Family, and Community Health healthier communities

FCAT Topics Sunshine State Standards, Grades 9-10

Health/ Physical Education
(continued)

Physical Education

- Benefits of Physical Activity
reduction of health risks by physical activity
stress relief through physical activity
effects of personal factors upon physical activity
preferences and exercise habits
role of physical activity in health
community resources
importance of physical activity as part of one's lifestyle
nutrition as related to physical activity
- Responsible Physical Activity Behaviors
- Methods to Achieve and Maintain a Healthy Level of Physical Fitness
appropriate fitness
fitness assessments
technology in fitness
beneficial physical activity
lifestyle changes
- Responsible Personal and Social Behavior in Physical Activity
- Diversity of Abilities and Cultures in Activities all influences upon physical activity preferences modification for special needs
- Enjoyment and Communication Through Physical Activities

Foreign Language

- Cultural Practices
patterns of behavior aspects of the culture target-language writers and their influence
- Information and Perspective Through the Foreign

Language
research information
communication of information in other classes
acquisition of information about a topic of community or world interest

- Different Patterns of Communication
elements that signify time
language in varied contexts
different worldviews
cultural similarities and differences
contributions of parallel cultures
- Benefits of Being Multilingual

Literature

- Integration of Multimedia and Technology
- Drama
- Literature of Different Cultures and Historical Periods
- Various Dialects of English

Mathematics Content Assessed by the FCAT and Item Formats by Benchmark

A: Number Sense, Concepts, and Operations

1. The student understands the different ways numbers are represented and used in the real world.

Grades 3-5 Benchmark	Grades 6-8 Benchmark	Grades 9-10 Benchmark
MA.A.1.2.1 names whole numbers combining three-digit numeration (hundreds, tens, ones) and the use of number periods, such as ones, thousands, and millions and associates verbal names, written word names, and standard numerals with whole numbers, commonly used fractions, decimals, and percents. (Assessed with A.1.2.4)	MA.A.1.3.1 associates verbal names, written word names, and standard numerals with integers, fractions, decimals; numbers expressed as percents; numbers with exponents; numbers in scientific notation; radicals; absolute value; and ratios. (Assessed with A.1.3.4)	MA.A.1.4.1 associates verbal names, written word names, and standard numerals with integers, rational numbers, irrational numbers, real numbers, and complex numbers. (Assessed with A.1.4.4)
MA.A.1.2.2 understands the relative size of whole numbers, commonly used fractions, decimals, and percents. $\begin{array}{lr}\text { Grades 3-4 } & \text { MC } \\ \text { Grade 5 } & \text { MC, GR }\end{array}$	MA.A.1.3.2 understands the relative size of integers, fractions, and decimals; numbers expressed as percents; numbers with exponents; numbers in scientific notation; radicals; absolute value; and ratios.	MA.A.1.4.2 understands the relative size of integers, rational numbers, irrational numbers, and real numbers.
MA.A.1.2.3 understands concrete and symbolic representations of whole numbers, fractions, decimals, and percents in real-world situations. (Assessed with A.1.2.4)	MA.A.1.3.3 understands concrete and symbolic representations of rational numbers and irrational numbers in real-world situations. (Assessed with A.1.3.4 and D.2.3.1)	MA.A.1.4.3 understands concrete and symbolic representations of real and complex numbers in real-world situations. (Assessed with A.1.4.4)
MA.A.1.2.4 understands that numbers can be represented in a variety of equivalent forms using whole numbers, decimals, fractions, and percents. (Also assesses A.1.2.1 and A.1.2.3)	MA.A.1.3.4 understands that numbers can be represented in a variety of equivalent forms, including integers, fractions, decimals, percents, scientific notation, exponents, radicals, and absolute value. (Also assesses A.1.3.1 and A.1.3.3) MC, GR	MA.A.1.4.4 understands that numbers can be represented in a variety of equivalent forms, including integers, fractions, decimals, percents, scientific notation, exponents, radicals, absolute value, and logarithms. (Also assesses A.1.4.1 and A.1.4.3) MC, GR

$\mathrm{MC}=$ multiple-choice, $\mathrm{GR}=$ gridded-response, $\mathrm{SR}=$ short-response, $\mathrm{ER}=$ extended-response
Unless otherwise noted, the item format or formats listed for an individual benchmark apply to all grades covered by that benchmark.

B-1 | FCAT Mathematics Test Item Specifications, Grades 9-10 © 2005 Florida Department of Education

Mathematics Content Assessed by the FCAT and Item Formats by Benchmark

A: Number Sense, Concepts, and Operations

2. The student understands number systems.

Grades 3-5 Benchmark	Grades 6-8 Benchmark	Grades 9-10 Benchmark		
MA.A.2.2.1 uses place-value concepts of grouping based upon powers of ten (thousandths, hundredths, tenths, ones, tens, hundreds, thousands) within the decimal number system. Grades 3-4Grade 5 MC MC, GR	MA.A.2.3.1 understands and uses exponential and scientific notation.	MAA.2.4.1 understands and uses the basic concepts of limits and infinity.		
MA.A.2.2.2 recognizes and compares the decimal number system to the structure of other number systems such as the Roman numeral system or bases other than ten.	MA.A.2.3.2 understands the structure of number systems other than the decimal number system.	MA.A.2.4.2 understands and uses the real number system.		
(Not assessed)			\quad (Not assessed)	(Assessed with A.3.4.1, A.3.4.2, and A.3.4.3)
:---				

3. The student understands the effects of operations on numbers and the relationships among these operations, selects appropriate operations,

 and computes for problem solving.| Grades 3-5 Benchmark | Grades 6-8 Benchmark | Grades 9-10 Benchmark |
| :--- | :--- | :--- |
| $\begin{array}{l}\text { MA.A.3.2.1 understands and explains the effects } \\ \text { of addition, subtraction, and multiplication on } \\ \text { whole numbers, decimals, and fractions, }\end{array}$ | $\begin{array}{l}\text { MA.A.3.3.1 understands and explains the } \\ \text { effects of addition, subtraction, multiplication, } \\ \text { and division on whole numbers, fractions, } \\ \text { including mixed numbers, and the effects of } \\ \text { division on whole numbers, including the inverse } \\ \text { relationship of multiplication and division. }\end{array}$ | $\begin{array}{l}\text { MA.A.3.4.1 understands and explains the effects } \\ \text { including the inverse relationships of positive } \\ \text { and negative numbers. } \\ \text { division on real real numbers, including square roots, }\end{array}$ |
| exponents, and appropriate inverse relationships. | | |
| (Also assesses A.2.4.2) | | |$\}$

$\mathrm{MC}=$ multiple-choice, $\mathrm{GR}=$ gridded-response, $\mathrm{SR}=$ short-response, $\mathrm{ER}=$ extended-response
Unless otherwise noted, the item format or formats listed for an individual benchmark apply to all grades covered by that benchmark.

Mathematics Content Assessed by the FCAT and Item Formats by Benchmark

A: Number Sense, Concepts, and Operations

3. The student understands the effects of operations on numbers and the relationships among these operations, selects appropriate operations, and computes for problem solving. (continued)

Grades 3-5 Benchmark	Grades 6-8 Benchmark	Grades 9-10 Benchmark
MA.A.3.2.2 selects the appropriate operation to solve specific problems involving addition, subtraction, and multiplication of whole numbers, decimals, and fractions, and division of whole numbers.	MA.A.3.3.2 selects the appropriate operation to solve problems involving addition, subtraction, multiplication, and division of rational numbers, ratios, proportions, and percents, including the appropriate application of the algebraic order of operations.	MA.A.3.4.2 selects and justifies alternative strategies, such as using properties of numbers, including inverse, identity, distributive, associative, transitive, that allow operational shortcuts for computational procedures in real-world or mathematical problems. (Also assesses A.2.4.2. and A.3.3.2)
MC	MC, GR	MC
MA.A.3.2.3 adds, subtracts, and multiplies whole numbers, decimals, and fractions, including mixed numbers, and divides whole numbers to solve real-world problems, using appropriate methods of computing, such as mental mathematics, paper and pencil, and calculator.	MA.A.3.3.3 adds, subtracts, multiplies, and divides whole numbers, decimals, and fractions, including mixed numbers, to solve real-world problems, using appropriate methods of computing, such as mental mathematics, paper and pencil, and calculator.	MA.A.3.4.3 adds, subtracts, multiplies, and divides real numbers, including square roots and exponents, using appropriate methods of computing, such as mental mathematics, paper and pencil, and calculator. (Also assesses A.2.4.2)
$\begin{array}{lr} \text { Grades 3-4 } & \text { MC } \\ \text { Grade 5 } & \text { MC, GR } \end{array}$	MC, GR	MC, GR

$\mathrm{MC}=$ multiple-choice, $\mathrm{GR}=$ gridded-response, $\mathrm{SR}=$ short-response, $\mathrm{ER}=$ extended-response
Unless otherwise noted, the item format or formats listed for an individual benchmark apply to all grades covered by that benchmark.

Mathematics Content Assessed by the FCAT and Item Formats by Benchmark

A: Number Sense, Concepts, and Operations

4. The student uses estimation in problem solving and computation.

Grades 3-5 Benchmark	Grades 6-8 Benchmark	Grades 9-10 Benchmark
MA.A.4.2.1 uses and justifies different estimation strategies in a real-world problem situation and determines the reasonableness of results of calculations in a given problem situation. (Also assesses B.3.2.1)	MA.A.4.3.1 uses estimation strategies to predict results and to check the reasonableness of results. (Also assesses A.4.2.1, B.2.3.1, and B.3.3.1)	MA.A.4.4.1 uses estimation strategies in complex situations to predict results and to check the reasonableness of results. (Also assesses A.4.2.1 and B.3.4.1)
Grades 3-4 MC Grade 5 SR	MC	

5. The student understands and applies theories related to numbers.

Grades 3-5 Benchmark	Grades 6-8 Benchmark	Grades 9-10 Benchmark
MA.A.5.2.1 understands and applies basic number theory concepts, including primes, composites, factors, and multiples.	MA.A.5.3.1 uses concepts about numbers, including primes, factors, and multiples, to build number sequences.	MA.A.5.4.1 applies special number relationships such as sequences and series to real-world problems.
	MC	(Assessed with D.1.3.1 and D.1.3.2)

$\mathrm{MC}=$ multiple-choice, $\mathrm{GR}=$ gridded-response, $\mathrm{SR}=$ short-response, $\mathrm{ER}=$ extended-response
Unless otherwise noted, the item format or formats listed for an individual benchmark apply to all grades covered by that benchmark.

Mathematics Content Assessed by the FCAT and Item Formats by Benchmark

B: Measurement

1. The student measures quantities in the real world and uses the measures to solve problems.

Grades 3-5 Benchmark	Grades 6-8 Benchmark	Grades 9-10 Benchmark
MA.B.1.2.1 uses concrete and graphic models to develop procedures for solving problems related to measurement including length, weight/mass, time, temperature, perimeter, area, volume/capacity, and angle. Grades 3-4 (Not assessed) Grade $5 \quad$ (Assessed with C.2.2.1)	MA.B.1.3.1 uses concrete and graphic models to derive formulas for finding perimeter, area, surface area, circumference, and volume of twoand three-dimensional shapes, including rectangular solids and cylinders. (Also assesses B.1.2.2 and B.2.3.1) Grades 6-7 MC, GR Grade $8 \quad$ GR, SR	MA.B.1.4.1 uses concrete and graphic models to derive formulas for finding perimeter, area, surface area, circumference, and volume of two- and three-dimensional shapes, including rectangular solids, cylinders, cones, and pyramids. (Also assesses B.1.2.2 and B.1.4.2) Grade 9 MC, GR Grade 10 MC, GR, SR
MA.B.1.2.2 solves real-world problems involving length, weight, perimeter, area, capacity, volume, time, temperature, and angles. $\begin{array}{lr}\text { Grades 3-4 } & \text { MC } \\ \text { Grade } 5 & \text { MC, GR }\end{array}$	MA.B.1.3.2 uses concrete and graphic models to derive formulas for finding rates, distance, time, and angle measures. (Also assesses B.1.2.2 and B.2.3.1) Grade 6 (Assessed with C.1.3.1) Grades 7-8 MC, GR	MA.B.1.4.2 uses concrete and graphic models to derive formulas for finding rate, distance, time, angle measures, and arc lengths. (Also assesses B.1.2.2) MC, GR
	MA.B.1.3.3 understands and describes how the change of a figure in such dimensions as length, width, height, or radius affects its other measurements such as perimeter, area, surface area, and volume. (Also assesses C.2.3.1) MC, GR	MA.B.1.4.3 relates the concepts of measurement to similarity and proportionality in real-world situations. Grade 9 MC, GR Grade 10 (Assessed with C.2.4.1)
	MA.B.1.3.4 constructs, interprets, and uses scale drawings such as those based on number lines and maps to solve real-world problems. (Also assesses B.2.3.1) MC, GR	

$\mathrm{MC}=$ multiple-choice, $\mathrm{GR}=$ gridded-response, $\mathrm{SR}=$ short-response, $\mathrm{ER}=$ extended-response
Unless otherwise noted, the item format or formats listed for an individual benchmark apply to all grades covered by that benchmark.
B-5 \quad FCAT Mathematics Test Item Specifications, Grades 9-10 © 2005 Florida Department of Education

Mathematics Content Assessed by the FCAT and Item Formats by Benchmark

B: Measurement

2. The student compares, contrasts, and converts within systems of measurement (both standard/nonstandard and metric/customary).

Grades 3-5 Benchmark	Grades 6-8 Benchmark	Grades 9-10 Benchmark
MA.B.2.2.1 uses direct (measured) and indirect (not measured) measures to calculate and compare measurable characteristics.	MA.B.2.3.1 uses direct (measured) and indirect (not measured) measures to compare a given characteristic in either metric or customary units. (Assessed with A.4.3.1, B.1.3.1, B.1.3.2, and B.1.3.4)	MA.B.2.4.1 selects and uses direct (measured) or indirect (not measured) methods of measurement as appropriate. $\begin{array}{lr} \text { Grade } 9 & \text { MC, GR } \\ \text { Grade } 10 & \text { MC } \end{array}$
MA.B.2.2.2 selects and uses appropriate standard and nonstandard units of measurement, according to type and size. (Also assesses B.4.2.1)	MA.B.2.3.2 solves problems involving units of measure and converts answers to a larger or smaller unit within either the metric or customary system. MC, GR	MA.B.2.4.2 solves real-world problems involving rated measures (miles per hour, feet per second). (Also assesses B.2.3.2) MC, GR
3. The student estimates measurements in real-world problem situations.		
Grades 3-5 Benchmark	Grades 6-8 Benchmark	Grades 9-10 Benchmark
MA.B.3.2.1 solves real-world problems involving estimates of measurements, including length, time, weight, temperature, money, perimeter, area, and volume. (Assessed with A.4.2.1)	MA.B.3.3.1 solves real-world and mathematical problems involving estimates of measurements including length, time, weight/mass, temperature, money, perimeter, area, and volume, in either customary or metric units. (Assessed with A.4.3.1)	MA.B.3.4.1 solves real-world and mathematical problems involving estimates of measurements, including length, time, weight/mass, temperature, money, perimeter, area, and volume, and estimates the effects of measurement errors on calculations. (Assessed with A.4.4.1)

[^0]
Mathematics Content Assessed by the FCAT and Item Formats by Benchmark

B: Measurement

4. The student selects and uses appropriate units and instruments for measurement to achieve the degree of precision and accuracy required in real-world situations.

Grades 3-5 Benchmark	Grades 6-8 Benchmark	Grades 9-10 Benchmark
MA.B.4.2.1 determines which units of measurement, such as seconds, square inches, dollars per tankful, to use with answers to real-world problems. (Assessed with B.2.2.2)	MA.B.4.3.1 selects appropriate units of measurement and determines and applies significant digits in a real-world context. (Significant digits should relate to both instrument precision and to the least precise unit of measurement.)	MA.B.4.4.1 determines the level of accuracy and precision, including absolute and relative errors of tolerance, required in real-world measurement situations. (Not assessed)
MA.B.4.2.2 selects and uses appropriate instruments and technology, including scales, rulers, thermometers, measuring cups, protractors, and gauges, to measure in real-world situations.	MA.B.4.3.2 selects and uses appropriate instruments, technology, and techniques to measure quantities in order to achieve specified degrees of accuracy in a problem situation.	MA.B.4.4.2 selects and uses appropriate instruments, technology, and techniques to measure quantities in order to achieve specified degrees of accuracy in a problem situation.
Grades 3-4 Grade 5 MC (Not assessed)	(Not assessed)	(Not assessed)

$\mathrm{MC}=$ multiple-choice, $\mathrm{GR}=$ gridded-response, $\mathrm{SR}=$ short-response, $\mathrm{ER}=$ extended-response
Unless otherwise noted, the item format or formats listed for an individual benchmark apply to all grades covered by that benchmark.

Mathematics Content Assessed by the FCAT and Item Formats by Benchmark

C: Geometry and Spatial Sense

1. The student describes, draws, identifies, and analyzes two- and three-dimensional shapes.

Grades 3-5 Benchmark	Grades 6-8 Benchmark	Grades 9-10 Benchmark
MA.C.1.2.1 given a verbal description, draws and/or models two- and three-dimensional shapes and uses appropriate geometric vocabulary to write a description of a figure or a picture composed of geometric figures.	MA.C.1.3.1 understands the basic properties of, and relationships pertaining to, regular and irregular geometric shapes in two and three dimensions. (Also assesses C.1.2.1)	MA.C.1.4.1 uses properties and relationships of geometric shapes to construct formal and informal proofs. (Also assesses C.1.2.1 and C.1.3.1)
MC	MC	

2. The student visualizes and illustrates ways in which shapes can be combined, subdivided, and changed.

Grades 3-5 Benchmark	Grades 6-8 Benchmark	Grades 9-10 Benchmark
MA.C.2.2.1 understands the concepts of spatial relationships, symmetry, reflections, congruency, and similarity. (Also assesses B.1.2.1, B.1.2.2, C.1.2.1, and C.3.2.1) Grades 3-4 MC Grade 5	MA.C.2.3.1 understands the geometric concepts of symmetry, reflections, congruency, similarity, perpendicularity, parallelism, and transformations, including flips (reflections), slides (translations), turns (rotations), and enlargements. (Also assesses B.1.3.3, C.1.2.1, C.1.3.1, and C.3.3.1)	MA.C.2.4.1 understands geometric concepts such as perpendicularity, parallelism, tangency, congruency, similarity, reflections, symmetry, and transformations including flips (reflections), slides (translations), turns (rotations), enlargements, rotations, and fractals. (Also assesses B.1.4.3, C.1.4.1, and C.3.4.1) Grade 9 MC, GR Grade 10 MC, GR, ER
MA.C.2.2.2 predicts, illustrates, and verifies which figures could result from a flip (reflection), slide (translation), or turn (rotation) of a given figure.	MA.C.2.3.2 predicts and verifies patterns involving tessellations (a covering of a plane with congruent copies of the same pattern with no holes and no overlaps, like floor tiles). (Assessed with C.3.3.1)	MA.C.2.4.2 analyzes and applies geometric relationships involving planar cross-sections (the intersection of a plane and a three-dimensional figure). Grade 9 (Not assessed) Grade 10 MC

$\mathrm{MC}=$ multiple-choice, $\mathrm{GR}=$ gridded-response, $\mathrm{SR}=$ short-response, $\mathrm{ER}=$ extended-response
Unless otherwise noted, the item format or formats listed for an individual benchmark apply to all grades covered by that benchmark.

Mathematics Content Assessed by the FCAT and Item Formats by Benchmark

C: Geometry and Spatial Sense

3. The student uses coordinate geometry to locate objects in both two and three dimensions and to describe objects algebraically.

Grades 3-5 Benchmark	Grades 6-8 Benchmark	Grades 9-10 Benchmark
MA.C.3.2.1 represents and applies a variety of strategies and geometric properties and formulas for two- and three-dimensional shapes to solve real-world and mathematical problems. (Also assesses C.2.2.1 and C.3.2.2) $\begin{array}{lr}\text { Grades 3-4 } \\ \text { Grade } 5 & \text { MC, SR }\end{array}$	MA.C.3.3.1 represents and applies geometric properties and relationships to solve real-world and mathematical problems. (Also assesses C.2.3.1, C.2.3.2, and C.3.2.2) Grades 6 MC Grades 7 MC, GR Grade 8 MC, SR	MA.C.3.4.1 represents and applies geometric properties and relationships to solve real-world and mathematical problems including ratio, proportion, and properties of right triangle trigonometry. (Also assesses C.2.4.1) MC, GR
MA.C.3.2.2 identifies and plots positive ordered pairs (whole numbers) in a rectangular coordinate system (graph).	MA.C.3.3.2 identifies and plots ordered pairs in all four quadrants of a rectangular coordinate system (graph) and applies simple properties of lines.	MA.C.3.4.2 using a rectangular coordinate system (graph), applies and algebraically verifies properties of two- and three-dimensional figures, including distance, midpoint, slope, parallelism, and perpendicularity. (Also assesses C.3.3.2 and D.2.4.1) $\begin{array}{lr}\text { Grade } 9 & \text { MC, GR } \\ \text { Grade } 10 & \text { MC, GR, SR }\end{array}$

$\mathrm{MC}=$ multiple-choice, $\mathrm{GR}=$ gridded-response, $\mathrm{SR}=$ short-response, $\mathrm{ER}=$ extended-response
Unless otherwise noted, the item format or formats listed for an individual benchmark apply to all grades covered by that benchmark.

Mathematics Content Assessed by the FCAT and Item Formats by Benchmark

D: Algebraic Thinking

1. The student describes, analyzes, and generalizes a wide variety of patterns, relations, and functions.

Grades 3-5 Benchmark	Grades 6-8 Benchmark	Grades 9-10 Benchmark
MA.D.1.2.1 describes a wide variety of patterns and relationships through models, such as manipulatives, tables, graphs, rules using algebraic symbols. (Also assesses D.1.2.2)	MA.D.1.3.1 describes a wide variety of patterns, relationships, and functions through models, such as manipulatives, tables, graphs, expressions, equations, and inequalities. (Also assesses A.5.3.1)	MA.D.1.4.1 describes, analyzes, and generalizes relationships, patterns, and functions using words, symbols, variables, tables, and graphs. MC, GR
$\begin{array}{lr} \text { Grades 3-4 } & \text { MC } \\ \text { Grade 5 } & \text { MC, GR } \end{array}$		
MA.D.1.2.2 generalizes a pattern, relation, or function to explain how a change in one quantity results in a change in another. (Also assesses D.1.2.1)	MA.D.1.3.2 creates and interprets tables, graphs, equations, and verbal descriptions to explain cause-and-effect relationships. (Also assesses A.5.3.1)	MA.D.1.4.2 determines the impact when changing parameters of given functions.
Grades 3-4 (Not assessed)	Grades 6-7 MC, GR	Grade 9 MC, GR
Grade 5 SR	Grade 8 MC, GR, SR	Grade $10 \mathrm{MC}, \mathrm{GR}, \mathrm{SR}$

2. The student uses expressions, equations, inequalities, graphs, and formulas to represent and interpret situations.

Grades 3-5 Benchmark	Grades 6-8 Benchmark	Grades 9-10 Benchmark	
MA.D.2.2.1 represents a given simple problem situation using diagrams, models, and symbolic expressions translated from verbal phrases, or verbal phrases translated from symbolic expressions, etc. (Also assesses D.2.2.2)	MA.D.2.3.1 represents and solves real-world problems graphically, with algebraic	MA.D.2.4.1 represents real-world problem expressions, equations, and inequalities. (Also assesses A.1.3.3)	(situations using finite graphs, matrices, sequences, series, and recursive relations.
	MC		

$\mathrm{MC}=$ multiple-choice, $\mathrm{GR}=$ gridded-response, $\mathrm{SR}=$ short-response, $\mathrm{ER}=$ extended-response
Unless otherwise noted, the item format or formats listed for an individual benchmark apply to all grades covered by that benchmark.
B-10 | FCAT Mathematics Test Item Specifications, Grades 9-10 © 2005 Florida Department of Education

Mathematics Content Assessed by the FCAT and Item Formats by Benchmark

E: Data Analysis and Probability

1. The student understands and uses the tools of data analysis for managing information.

Grades 3-5 Benchmark	Grades 6-8 Benchmark	Grades 9-10 Benchmark
MA.E.1.2.1 solves problems by generating, collecting, organizing, displaying, and analyzing data using histograms, bar graphs, circle graphs, line graphs, pictographs, and charts. (Also assesses E.1.2.3)	MA.E.1.3.1 collects, organizes, and displays data in a variety of forms, including tables, line graphs, charts, bar graphs, to determine how different ways of presenting data can lead to different interpretations. (Also assesses E.1.3.3) Grades 6-7 MC, GR Grade 8 MC, GR, ER	MA.E.1.4.1 interprets data that has been collected, organized, and displayed in charts, tables, and plots. (Also assesses E.1.3.1 and E.1.4.3)
MA.E.1.2.2 determines range, mean, median, and mode from sets of data. (Also assesses E.1.2.3) Grades 3-4 MC Grade 5 MC, GR	MA.E.1.3.2 understands and applies the concepts of range and central tendency (mean, median, and mode). (Also assesses E.1.3.3) MC, GR	MA.E.1.4.2 calculates measures of central tendency (mean, median, and mode) and dispersion (range, standard deviation, and variance) for complex sets of data and determines the most meaningful measure to describe the data. (Also assesses E.1.4.3) MC, GR
MA.E.1.2.3 analyzes real-world data to recognize patterns and relationships of the measures of central tendency using tables, charts, histograms, bar graphs, line graphs, pictographs, and circle graphs generated by appropriate technology, including calculators	MA.E.1.3.3 analyzes real-world data by applying appropriate formulas for measures of central tendency and organizing data in a quality display, using appropriate technology, including calculators and computers.	MA.E.1.4.3 analyzes real-world data and makes predictions of larger populations by applying formulas to calculate measures of central tendency and dispersion using the sample population data, and using appropriate technology, including calculators and computers.

(Assessed with E.1.2.1 and E.1.2.2)
(Assessed with E.1.3.1 and E.1.3.2)
(Assessed with E.1.4.1 and E.1.4.2)
$\mathrm{MC}=$ multiple-choice, $\mathrm{GR}=$ gridded-response, $\mathrm{SR}=$ short-response, $\mathrm{ER}=$ extended-response
Unless otherwise noted, the item format or formats listed for an individual benchmark apply to all grades covered by that benchmark.

Mathematics Content Assessed by the FCAT and Item Formats by Benchmark

E: Data Analysis and Probability

2. The student identifies patterns and makes predictions from an orderly display of data using concepts of probability and statistics.

Grades 3-5 Benchmark	Grades 6-8 Benchmark	Grades 9-10 Benchmark
MA.E.2.2.1 uses models, such as tree diagrams, to display possible outcomes and to predict events.	MA.E.2.3.1 compares experimental results with mathematical expectations of probabilities.	MA.E.2.4.1 determines probabilities using counting procedures, tables, tree diagrams, and formulas for permutations and combinations. (Also assesses E.2.4.2)
Grades 3-4 MC Grade 5 SR	MC	MC, GR
MA.E.2.2.2 predicts the likelihood of simple events occurring. MC	MA.E.2.3.2 determines odds for and odds against a given situation. (Also assesses E.2.2.2)	MA.E.2.4.2 determines the probability for simple and compound events as well as independent and dependent events. (Assessed with E.2.4.1)

3. The student uses statistical methods to make inferences and valid arguments about real-world situations.

Grades 3-5 Benchmark	Grades 6-8 Benchmark	Grades 9-10 Benchmark
MA.E.3.2.1 designs experiments to answer class or personal questions, collects information, and interprets the results using statistics (range, mean, median, and mode) and pictographs, charts, bar graphs, circle graphs, and line graphs. (Also assesses E.3.2.2)	MA.E.3.3.1 formulates hypotheses, designs experiments, collects and interprets data, and evaluates hypotheses by making inferences and drawing conclusions based on statistics (range, mean, median, and mode) and tables, graphs, and charts. (Also assesses E.3.3.2) Grades 3-4 (Not assessed)	MA.E.3.4.1 designs and performs real-world statistical experiments that involve more than one variable, then analyzes results and reports findings. (Also assesses E.3.3.1 and E.3.4.2)
MC		

[^1]
FCAT Mathematics Glossary Grades 9-10

The terms defined in this glossary pertain to the Sunshine State Standards in mathematics for Grades 9 and 10 and the content assessed on the FCAT in mathematics. Included are the glossary terms from Grades 3 through 8. Italicized words or phrases within a definition are defined separately in this glossary.

Absolute value a number's distance from zero (0) on a number line. Distance is

 expressed as a positive value (e.g., $|3|=3$ and $|-3|=3$).
Acute angle

an angle that measures less than 90° and greater than 0°.

Addend

any number being added.

Additive identity

Additive inverse property

Algebraic equation (inequality)

Algebraic expression

Algebraic order of operations

Algebraic rule

Altitude

Angle
the number zero (0). When zero (0) is added to another number the sum is the number itself (e.g., $5+0=5$).
a number and its additive inverse have a sum of zero (0) (e.g., in the equation $3+-3=0,3$ and -3 are additive inverses of each other).
a mathematical sentence containing variables in which two expressions are connected by an equality (inequality) symbol. See also equation and inequality.
an expression containing numbers and variables (e.g., $7 x$), and operations that involve numbers and variables (e.g., $2 x+y$ or $3 a^{2}-4 b+2$). Algebraic expressions do not contain equality or inequality symbols.
the order of performing computations is parentheses first, then exponents, followed by multiplication and/or division (as read from left to right), then addition and/or subtraction (as read from left to right).
For example:
$=5+(12-2) \div 2-3 \times 2$
$=5+10 \div 2-3 \times 2$
$=5+5-6$
$=10-6$
$=4$
a mathematical expression that contains variables and describes a pattern or relationship.
the perpendicular distance from a vertex in a polygon to its opposite side.
two rays extending from a common end point called the vertex. Angles are measured in degrees.

Area	the measure, in square units, of the inside region of a closed twodimensional figure (e.g., a rectangle with sides of 4 units by 6 units has an area of 24 square units).
Associative property	the way in which three or more numbers are grouped for addition or multiplication does not change their sum or product, respectively [e.g., $(5+6)+9=5+(6+9)$ or $(2 \times 3) \times 8=2 \times(3 \times 8)]$.
Axes (of a graph)	the horizontal and vertical number lines used in a coordinate plane system.
Axis	the singular form of axes.
Bar graph	a graph that uses either vertical or horizontal bars to display data.
Base (algebraic)	the number used as a factor in exponential form. For example 2^{3} is the exponential form of $2 \times 2 \times 2$. The numeral two (2) is called the base, and the numeral three (3) is called the exponent.
Base (geometric)	the line or plane of a geometric figure, from which an altitude can be constructed, upon which a figure is thought to rest.
Box-and-whisker plot	a basic graphing tool that displays centering, spread, and distribution of a data set.
Break	a zigzag on the x - or y-axis in a line or bar graph indicating that the data being displayed do not include all of the values that exist on the number line used. Also called a squiggle.
Capacity	the amount of space that can be filled in a container. Both capacity and volume are used to measure three-dimensional spaces; however, capacity usually refers to fluid measures, whereas volume is described by cubic units.
Central angle	an angle that has its vertex at the center of a circle, with radii as its sides.
Chart	a data display that presents information in columns and rows.
Circle graph	a data display that divides a circle into regions representing a portion of the total set of data. The circle represents the whole set of data.
Circumference	the distance around a circle.
Closed figure	a two-dimensional figure that divides the plane in which the figure lies into two parts-the part inside the figure and the part outside the figure (e.g., circles, squares, rectangles).

Commutative property	the order in which two numbers are added or multiplied does not change their sum or product, respectively (e.g., $2+3=3+2$ or $4 \times 7=7 \times 4$).
Complementary angles	two angles with measures that sum to be exactly 90°.
Composite number	a whole number that has more than two factors.
Congruent	figures or objects that are the same shape and size.
Coordinate grid or plane	a two-dimensional network of horizontal and vertical lines that are parallel and evenly-spaced; especially designed for locating points, displaying data, or drawing maps.
Coordinates	numbers that correspond to points on a coordinate plane in the form (x, y), or a number that corresponds to a point on a number line.
Counting principle	if a first event has n outcomes and a second event has m outcomes, then the first event followed by the second event has $n \times m$ outcomes.
Customary units	the units of measure developed and used in the United States. Customary units for length are inches, feet, yards, and miles. Customary units for weight are ounces, pounds, and tons. Customary units for volume are cubic inches, cubic feet, and cubic yards. Customary units for capacity are fluid ounces, cups, pints, quarts, and gallons.
Cylinder	a three-dimensional figure with two parallel bases that are congruent circles.
Data displays/graphs	different ways of displaying data in charts, tables, or graphs, including pictographs, circle graphs, single-, double-, or triple-bar and line graphs, histograms, stem-and-leaf plots, box-and-whisker plots, and scatter plots.
Decimal number	any number written with a decimal point in the number. A decimal number falls between two whole numbers (e.g., 1.5 falls between 1 and 2). Decimal numbers smaller than 1 are sometimes called decimal fractions (e.g., five-tenths is written 0.5).
Diameter	a line segment from any point on the circle passing through the center to another point on the circle.
Difference	a number that is the result of subtraction.

Dilation
 Direct measure
 Distributive property

Divisible

Divisor

Empirical probability

Enlargement

Equation

Equilateral triangle

Equivalent expressions

Equivalent forms of a number

Estimation
\section*{Evaluate an algebraic expression}

Exponent (exponential form)

Expression

Extraneous
 information

a proportional increase or decrease in size in all dimensions.
obtaining the measure of an object by using measuring devices, either standard devices of the customary or metric systems, or nonstandard devices such as a paper clip or pencil.
the product of a number and the sum or difference of two numbers is equal to the sum or difference of the two products (e.g., $x(a+b)=a x+b x)$.
a number capable of being divided by another number without a remainder.
the number by which another number is divided.
the likelihood of an event happening that is based on experience and observation rather than on theory.

See dilation.
a mathematical sentence in which two expressions are connected by an equality symbol. See also algebraic equation (inequality).
a triangle with three congruent sides.
expressions that have the same value but are presented in a different format using the properties of numbers.
the same number expressed in different forms (e.g., $\frac{3}{4}, 0.75,75 \%$).
the use of rounding and/or other strategies to determine a reasonably accurate approximation, without calculating an exact answer (e.g., clustering, front-end estimating, grouping, etc.).
substitute numbers for the variables and follow the algebraic order of operations to find the numerical value of the expression.
the number of times the base occurs as a factor (e.g., 2^{3} is the exponential form of $2 \times 2 \times 2$). The numeral two (2) is called the base, and the numeral three (3) is called the exponent.
a collection of numbers, symbols, and/or operation signs that stands for a number.
information that is not necessary to solving the problem.

Extrapolate	to estimate or infer a value or quantity beyond the known range of data.
Face	one of the plane surfaces bounding a three-dimensional figure; a side.
Factor	a number or expression that divides evenly into another number [e.g., $1,2,4,5,10$, and 20 are factors of 20 and $(x+1)$ is one of the factors of $\left.\left(x^{2}-1\right)\right]$.
Flip	See reflection.
Fraction	any part of a whole is called a fraction (e.g., one-half written in fractional form is $\frac{1}{2}$).
Function (of \boldsymbol{x})	a relation in which each value of x is paired with a unique value of y.
Function table	a table of x - and y-values (ordered pairs) that represents the function, pattern, relationship, or sequence between the two variables.
Grid	See coordinate grid.
Height	a line segment extending from the vertex or apex of a figure to its base and forming a right angle with the base or plane that contains the base.
Hypotenuse	the longest side of a right triangle; the side opposite the right angle.
Hypothesis	a proposition or supposition developed to provide a basis for further investigation or research.
Indirect measure	the measurement of an object through the known measure of another object.
Inequality	a sentence that states one expression is greater than, greater than or equal to, less than, less than or equal to, or not equal to, another expression (e.g., $a \neq 5$ or $x<7$ or $2 y+3 \geq 11$). See also algebraic inequality.
Integers	the numbers in the set $\{\ldots .4,-3,-2,-1,0,1,2,3,4 \ldots\}$.
Intercept	the value of a variable when all other variables in the equation equal zero (0). On a graph, the values where a function crosses the axes.
Intersection	the point at which lines or curves meet; the line where planes meet.
Inverse operation	an action that undoes a previously applied action (e.g., subtraction is the inverse operation of addition).

Irrational number

Isosceles triangle
Labels (for a graph)

Length

Likelihood
Line

Line graph
Line segment

Linear equation

Linear inequality

Mass

Mean

Median

Metric units
a real number that cannot be expressed as a ratio of two integers (e.g., $\sqrt{2}$).
a triangle with two congruent sides and two congruent angles.
the titles given to a graph, the axes of a graph, or to the scales on the axes of a graph.
a one-dimensional measure that is the measurable property of line segments.
the chance that something is likely to happen. See probability.
a collection of an infinite number of points in a straight pathway with unlimited length and having no width.
a graph that displays data using connected line segments.
a portion of a line that consists of two defined endpoints and all the points in between.
an algebraic equation in which the variable quantity or quantities are raised to the zero or the graph is a straight line $[$ e.g., $20=2(w+4)+2 w$ and $y=3 x+4]$.
an algebraic inequality in which the variable quantity or quantities are raised to the zero or first power and the graph is a region whose boundary is the straight line formed by the inequality.
the amount of matter in an object.
the arithmetic average of a set of numbers. It is also a measure of central tendency.
the middle point of a set of rank-ordered numbers where half of the numbers are above the median and half are below it. It is also a measure of central tendency.
the units of measure developed in Europe and used in most of the world.
Like the decimal system, the metric system uses the base 10 . Metric units for length are millimeters, centimeters, meters, and kilometers.
Metric units for mass are milligrams, grams, and kilograms. Metric units for volume are cubic millimeters, cubic centimeters, and cubic meters.
Metric units for capacity are milliliters, centiliters, liters, and kiloliters.

Midpoint of a line segment

Mode

Multiples

Multiplicative identity

Multiplicative inverse (reciprocal)

Natural numbers (counting numbers)

Negative exponent

Nonstandard units
 of measure

Number line

Obtuse angle
Odds

Operation

Operational shortcut
Ordered pair

Organized data

the point on a line segment equidistant from the endpoints.
the score or data point found most often in a set of numbers. There may be no mode, one mode, or more than one mode in a set of numbers. It is also a measure of central tendency.
the numbers that result from multiplying a given whole number by the set of whole numbers (e.g., the multiples of 15 are $0,15,30,45$, 60,75 , etc.).
the number one (1). The product of a number and the multiplicative identity is the number itself (e.g., $5 \times 1=5$).
any two numbers with a product of 1 (e.g., 4 and $\frac{1}{4}$). Zero (0) has no multiplicative inverse.
the numbers in the set $\{1,2,3,4,5 \ldots\}$.
used to designate the reciprocal of a number to the absolute value of the exponent. Also used in scientific notation to designate a number smaller than one (1). For example, 3.45×10^{-2} equals 0.0345 .
objects such as blocks, paper clips, crayons, or pencils that can be used to obtain a measure.
a line on which ordered numbers can be written or visualized.
an angle with a measure of more than 90° but less than 180°.
the ratio of one event occurring (favorable outcome) to it not occurring (unfavorable outcome) if all outcomes are equally likely.
any mathematical process, such as addition, subtraction, multiplication, division, raising to a power, or finding the square root.
a method having fewer arithmetic calculations.
the location of a single point on a rectangular coordinate system where the first and second values represent the position relative to the x-axis and y-axis, respectively [e.g., (x, y) or (3, -4)].
data arranged in a display that is meaningful and that assists in the interpretation of the data. See data displays.

Origin	the point of intersection of the x - and y-axes in a rectangular coordinate system, where the x-coordinate and y-coordinate are both zero (0).
Parallel lines	two lines in the same plane that are a constant distance apart. Parallel lines have equal slopes.
Pattern (relationship)	a predictable or prescribed sequence of numbers, objects, etc. Patterns and relationships may be described or presented using manipulatives, tables, graphics (pictures or drawings), or algebraic rules (functions).
Percent	a special-case ratio which compares numbers to 100 (the second term). For example, 25% means the ratio of 25 to 100 .
Perimeter	the distance around a polygon.
Perpendicular	two lines, two line segments, or two planes that intersect to form a right angle.
$\mathbf{P i}(\pi)$	the symbol designating the ratio of the circumference of a circle to its diameter. It is an irrational number with common approximations of either 3.14 or $\frac{22}{7}$.
Pictograph	a data display constructed with pictures or symbols to visualize any ratios between two measures or counts.
Place value	the position of a single digit in a number.
Planar cross-section	the intersection of a plane and a three-dimensional figure.
Plane	an infinite, two-dimensional geometric surface defined by three non-linear points or two distinct parallel or intersecting lines.
Plane figure	a two-dimensional figure that lies entirely within a single plane.
Point	a specific location in space that has no discernible length or width.
Polygon	a closed-plane figure, having at least three sides that are line segments and are connected at their end-points.
Prime number	any whole number with only two whole number factors, 1 and itself (e.g., 2, 3, 5, 7, 11, etc.).

Probability	a measure of the likelihood that a given event will occur; expressed as a ratio of one event occurring (favorable outcomes) to the number of equally likely possible outcomes. See also empirical probability and theoretical/expected probability.
Product	the result of multiplying numbers together.
Proof	a logical argument that demonstrates the truth of a given statement. In a formal proof, each step can be justified with a reason; such as a given, a definition, an axiom, or a previously proven property or theorem.
Proportion	a mathematical sentence stating that two ratios are equal.
Proportional	having the same or a constant ratio. Two quantities that have the same ratio are considered directly proportional (e.g., If $y=k x$, then y is said to be directly proportional to x and the constant of proportionality is k). Two quantities whose products are always the same are considered inversely proportional (e.g., If $x y=k$, then y is said to be inversely proportional to x).
Pyramid	a three-dimensional figure whose base is a polygon and whose faces are triangles with a common vertex.
Pythagorean theorem	the square of the hypotenuse (c) of a right triangle is equal to the sum of the square of the legs $(a$ and $b)$, as shown in the equation $c^{2}=a^{2}+b^{2}$.
Quadrant	any of the four regions formed by the axes in a rectangular coordinate system.
Quotient	the result of dividing two numbers.
Radical	an expression that has a root (square root, cube root, etc.) For example, $\sqrt{25}$ is a radical. Any root can be specified by an index number, b, in the form $\sqrt[b]{a}$ (e.g., $\sqrt[3]{8}$). A radical without an index number is understood to be a square root.
Radical sign	the symbol $(\sqrt{ })$ used before a number to show that the number is a radicand. See also radical.
Radicand	the number that appears within a radical sign (e.g., in $\sqrt{25}, 25$ is the radicand).
Radius	a line segment extending from the center of a circle or sphere to a point on the circle or sphere. Plural: radii.

$\left.\begin{array}{ll}\begin{array}{l}\text { Right prism or } \\ \text { rectangular solid }\end{array} & \begin{array}{l}\text { a three-dimensional figure (polyhedron) with congruent, polygonal } \\ \text { bases and lateral faces that are all parallelograms. }\end{array} \\ \begin{array}{l}\text { Right triangle } \\ \text { geometry }\end{array} & \begin{array}{l}\text { finding the measures of missing sides or angles of a right triangle } \\ \text { when given the measures of other sides or angles. }\end{array} \\ \text { Rise } & \begin{array}{l}\text { the vertical change on the graph between two points. }\end{array} \\ \text { Rotation } & \begin{array}{l}\text { axansformation of a figure by turning it about a center point or amount of rotation is usually expressed in the number of } \\ \text { degrees (e.g., a 90 rotation). Also called a turn. }\end{array} \\ \text { Rule } & \begin{array}{l}\text { a mathematical expression that describes a pattern or relationship, or } \\ \text { a written description of the pattern or relationship. }\end{array} \\ \text { Run } & \begin{array}{l}\text { the horizontal change on a graph between two points. }\end{array} \\ \text { Scale } & \begin{array}{l}\text { a graph. }\end{array} \\ \text { the numeric values, set at fixed intervals, assigned to the axes of }\end{array}\right\}$

Similarity

Slide

Slope

Solid figures

Sphere

Square root

Squiggle

Standard units of measure

Stem-and-leaf plot
Straight angle
Sum

Supplementary angles
Surface area of a geometric solid

Symbolic
 representations of numbers

Symmetry
a term describing figures that are the same shape but are not necessarily the same size or in the same position.

See translation.

The ratio of change in the vertical axis (y-axis) to each unit change in the horizontal axis (x-axis) in the form $\frac{\text { rise }}{\text { run }}$ or $\frac{\Delta y}{\Delta x}$. Also, the constant, m, in the linear equation for the slope-intercept form $y=m x+b$.
three-dimensional figures that completely enclose a portion of space (e.g., a rectangular prism, cube, sphere, right circular cylinder, right circular cone, and square pyramid).
a three-dimensional figure in which all points on the figure are equidistant from a center point.
a positive real number that can be multiplied by itself to produce a given number (e.g., the square root of 144 is 12 or $\sqrt{144}=12$).

See break.
accepted measuring devices and units of the customary or metric system.
a graph that organizes data by place value to compare data frequencies.
an angle that measures exactly 180°.
the result of adding numbers together.
two angles, with measures the sum of which is exactly 180°.
the sum of the areas of the faces and any curved surfaces of the figure that create the geometric solid.
expressions represented by symbols (e.g., circles shaded to represent $\frac{1}{4}$ or variables used to represent quantities).
a term describing the result of a line drawn through the center of a figure such that the two halves of the figure are reflections of each other across the line.
a group of two or more equations that are related to the same situation and share variables. The solution to a system of equations is an ordered number set that makes all of the equations true.

Table
 Tessellation
 Theoretical/expected probability

Transformation

Transitive property

Translation

Transversal
Tree diagram

Trend line
Turn

Unorganized data
Variable
Vertex

Vertical angles
Volume

Weight
a data display that organizes information about a topic into categories. See also chart.
a covering of a plane with congruent copies of the same pattern with no holes and no overlaps.
the likelihood of an event happening based on theory rather than on experience and observation.
an operation on a geometric figure by which another image is created. Common transformations include reflections (flips), translations (slides), rotations (turns), and dilations.
when the first element has a particular relationship to a second element that in turn has the same relationship to a third element, the first has this same relationship to the third element (e.g., if $a=b$ and $b=c$, then $a=c$).
a transformation in which every point in a figure is moved in the same direction and by the same distance. See also slide.
a line that intersects two or more lines at different points.
a diagram in which all the possible outcomes of a given event are displayed.
a line on a graph indicating a statistical trend.
See rotation.
data that are presented in a random manner.
any symbol, usually a letter, which could represent a number.
the point common to the two rays that form an angle; the point common to any two sides of a polygon; the point common to three or more edges of a polyhedron.
the opposite or non-adjacent angles formed when two lines intersect.
the amount of space occupied in three dimensions and expressed in cubic units. Both capacity and volume are used to measure empty spaces; however, capacity usually refers to fluid measures, whereas volume is described by cubic units.
measures that represent the force of gravity on an object.

Whole numbers
x-axis
\boldsymbol{x}-intercept
y-axis
y-intercept
the numbers in the set $\{0,1,2,3,4 \ldots\}$.
the horizontal number line on a rectangular coordinate system.
the value of x at the point where a line or graph intersects the x-axis. The value of y is zero (0) at this point.
the vertical number line on a rectangular coordinate system.
the value of y at the point where a line or graph intersects the y-axis. The value of x is zero (0) at this point.

FCAT Mathematics Scoring Rubrics
 Grades 9-10

Short-Response (SR) Tasks

2 points A score of two indicates that the student has demonstrated a thorough understanding of the mathematics concepts and/or procedures embodied in the task. The student has completed the task correctly, in a mathematically sound manner. When required, student explanations and/or interpretations are clear and complete. The response may contain minor flaws that do not detract from the demonstration of a thorough understanding.

1 point A score of one indicates that the student has provided a response that is only partially correct. For example, the student may provide a correct solution, but may demonstrate some misunderstanding of the underlying mathematical concepts or procedures. Conversely, a student may provide a computationally incorrect solution but could have applied appropriate and mathematically sound procedures, or the student's explanation could indicate an understanding of the task, despite the error.

0 points A score of zero indicates the student has provided either no response at all, or a completely incorrect or uninterpretable response, or demonstrated insufficient understanding of the mathematics concepts and/or procedures embodied in the task. For example, a student may provide some work that is mathematically correct, but the work does not demonstrate even a rudimentary understanding of the primary focus of the task.

Extended-Response (ER) Tasks

4 points A score of four is a response in which the student demonstrates a thorough understanding of the mathematics concepts and/or procedures embodied in the task. The student has responded correctly to the task, used mathematically sound procedures, and provided clear and complete explanations and interpretations. The response may contain minor flaws that do not detract from the demonstration of a thorough understanding.

3 points A score of three is a response in which the student demonstrates an understanding of the mathematics concepts and/or procedures embodied in the task. The student's response to the task is essentially correct with the mathematical procedures used and the explanations and interpretations provided demonstrating an essential but less than thorough understanding. The response may contain minor flaws that reflect inattentive execution of mathematical procedures or indications of some misunderstanding of the underlying mathematics concepts and/or procedures.

2 points A score of two indicates that the student has demonstrated only a partial understanding of the mathematics concepts and/or procedures embodied in the task. Although the student may have used the correct approach to obtaining a solution or may have provided a correct solution, the student's work lacks an essential understanding of the underlying mathematical concepts. The response contains errors related to misunderstanding important aspects of the task, misuse of mathematical procedures, or faulty interpretations of results.

1 point A score of one indicates that the student has demonstrated a very limited understanding of the mathematics concepts and/or procedures embodied in the task. The student's response is incomplete and exhibits many flaws. Although the student's response has addressed some of the conditions of the task, the student reached an inadequate conclusion and/or provided reasoning that was faulty or incomplete. The response exhibits many flaws or may be incomplete.

0 points A score of zero indicates the student has provided either no response at all, or a completely incorrect or uninterpretable response, or demonstrated insufficient understanding of the mathematics concepts and/or procedures embodied in the task. For example, a student may provide some work that is mathematically correct, but the work does not demonstrate even a rudimentary understanding of the primary focus of the task.

I nstructions for Item Review

Directions: A series of questions numbered $1-9$ is presented below. These questions are designed to assist with your evaluation of the quality of FCAT test items you will be reviewing. The attached chart is an example of the one you will use to record your rating of each item. You will review the items independently before discussing each item with other committee members. If you identify any problem area in the item during the independent review, you should put a crossmark (x) in the appropriate column. Crossmarks (x) will indicate problem areas and blank spaces or checks (\checkmark) will indicate no problems.

1. Does the test item measure the benchmark?
2. Does the content measured by the item meet the content limits of the FCAT Test Item Specifications?
3. In your professional judgment, what is the cognitive complexity of the item for students who have attained the benchmark at the grade level being assessed? In other words, is the item best categorized as low complexity (L), moderate complexity (M), or high complexity (H)? Use the cognitive complexity handouts in making this judgment.
4. In your professional judgment, what is the level of difficulty of the item for students who have attained the benchmark at the grade level being assessed?

Use: $\mathrm{E}=$ easy (more than 70% of the students should get the item correct) A = average (from 40% to 70% of the students should get this item correct) $\mathrm{C}=$ challenging (less than 40% of the students should get this item correct)
5. Is the Sunshine State Standards topic appropriate for the item?
6. Is the wording/context of the item (stem and stimulus) appropriate for the grade level?
7. Is the assigned content focus appropriate for the item? Is there a better content focus available for the assigned benchmark (using DOE's content focus spreadsheet)?
8. Is the keyed response the correct, best, and only answer? For gridded-response items: Does the problem result in an answer that will fit in the grid? Do other acceptable answers need to be identified in the answer key?
9. Are the multiple-choice options appropriate, parallel (both grammatically and conceptually) to the keyed response, and plausible?

Overall Quality

Rate the overall quality of each test item using the following rating definitions and codes.

```
A (Accept)
AR (Accept as Revised)
RR (Revise and Re-present, including art)
D (Delete)
```

After the group discussion and possible revision of an item, you may wish to change your overall rating. If so, place a slash (/) through your original rating and give the item a new rating.

Florida Departmient of Education www.fidoe.org

Assessment and School Performance
Florida Department of Education

[^0]: $\mathrm{MC}=$ multiple-choice, $\mathrm{GR}=$ gridded-response, $\mathrm{SR}=$ short-response, $\mathrm{ER}=$ extended-response
 Unless otherwise noted, the item format or formats listed for an individual benchmark apply to all grades covered by that benchmark.

[^1]: $\mathrm{MC}=$ multiple-choice, $\mathrm{GR}=$ gridded-response, $\mathrm{SR}=$ short-response, $\mathrm{ER}=$ extended-response
 Unless otherwise noted, the item format or formats listed for an individual benchmark apply to all grades covered by that benchmark.
 B-12 | FCAT Mathematics Test Item Specifications, Grades 9-10 © 2005 Florida Department of Education

